

ABN 64 002 841 063

DETAILED CONTAMINATION ASSESSMENT

RESIDENTIAL DEVELOPMENT OF STAGE 6 AIRDS BRADBURY RENEWAL PROJECT BRIAR ROAD, AIRDS

REPORT NO 13793/5-AA 28 APRIL 2017

ABN 64 002 841 063

Job No: 13793/5 Our Ref: 13793/5-AA 28 April 2017

Urban Growth NSW P O Box 237 PARRAMATTA NSW 2124 Email: <u>Pneville@urbangrowth.nsw.gov.au</u>

Attention: Mr P Neville

Dear Sir

re Residential Development of Stage 6 Airds Bradbury Renewal Project - Briar Road, Airds Detailed Contamination Assessment

Please find herewith our Detailed Contamination Assessment report for the above site.

A brief of the outcome of the assessment was summarised in the Executive Summary.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

Azu

JOHN XU Associate BE, MEngSc, MIEAust

ABN 64 002 841 063

EXECUTIVE SUMMARY

A detailed contamination assessment (DCA) was carried out for the site known as Residential Development of Stage 6, located at Briar Road, Airds, in the local government area of Campbelltown.

This assessment was based on site historical data presented in the Preliminary Site (Contamination) Investigation report prepared by JBS Environmental Pty Ltd (JBS) in March 2009.

The objectives of the assessment were to determine the contamination status of the site and to assess the suitability of the site for the proposed residential (with garden/accessible soil) land use.

In order to achieve the objectives a site reconnaissance, review of site historical, geological and information, sampling and testing were carried out.

The findings of this DCA are summarised as follows:

- The eastern portion of site was used as residential/housing commission, whilst the western portion of the site, known as Dorchester Reserve, was vacant. Some areas were long grass covered. An area with dense vegetation was noted. The site was occupied by a number of site features (refer to Drawing No 13793/5-AA1) at the time of sampling and site inspection.
- Based on the site history and site inspection, three areas of concern and associated contaminants of potential concern have been identified within the site as summarised in the table presented in Section 7.0 of this report.
- As discussed in Section 12.0, all the laboratory test results for the recovered samples satisfied the criteria for stating that the analytes selected are either not present (i.e. concentrations less than laboratory limits of reporting) or present in the samples at concentrations that do not pose a risk of harm to human health or the environment under a "residential (with garden/accessible soil)" form of development.
- Potential off-site impacts of contaminants on groundwater and waterbodies are considered to be low.

Based on this assessment, it is our opinion that the site can be made suitable for the proposed residential (with garden/accessible soil) land use subject to implementation of the following recommendations, prior to site preparation and earthworks:

- Additional 5 sampling points/locations where TP14, TP25, TP26, TP40 and TP51 were located will be required after complete demolition and removal of site features, in order to check for the presence or otherwise of fill materials and to comply with the "Sampling Design Guidelines for Contaminated Sites" 1995.
- Assessment (by sampling and testing) of soil in the footprints of site features such as the residential/housing commission's buildings, sheds/carports, any hardstand and sections of the existing Briar Road and Waterhouse Place, etc, will be required after complete demolition and removal and/or road closure. The purpose of this is to ascertain the presence or otherwise of "suspect" materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos, ash particles, etc.) and fill, which is different to those encountered for this assessment, to address the potential contamination as listed in the table in Section 7.0 of this report, as well as to determine the contamination status of the soil.

- Due to the presence of long grass and dense vegetation in some areas as shown on Drawing No 13793/5-AA1, potentially contaminated area(s), filled area(s), building rubble, asbestos sheet(s)/piece(s), ash materials, staining, etc., could be masked by the long grass and dense vegetation. The long grass and dense vegetation must be slashed to enable detailed site inspection. Additional sampling and testing might be required.
- In the event of contamination for the abovementioned assessments, further assessment, preparation of a Remedial Action Plan (RAP) and validation (after completion of remediation) to be undertaken by a suitably qualified person (environmental consultant) will be required.

If suspect materials are encountered during any stage of future building demolition/site preparation/earthworks (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets/pieces/pipes, ash material, etc.), we recommend that this office is contacted for assessment, and to take all necessary actions.

Reference should be made to Section 13.0 for details of the recommendations regarding any materials to be excavated and removed from the site, and any fill to be imported to the site.

Reference should be made to Section 14.0 of the report, which sets out details of the limitations of the assessment.

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	
2.0	SCOPE OF WORK	
3.0	SITE IDENTIFICATION	
4.0	PREVIOUS CONTAMINATION ASSESSMENT & SITE HISTORY UPDATE	
5.0	SITE CONDITION AND SURROUNDING ENVIRONMENT	
5	.1 Site Condition	
5	.2 Surrounding Environment	5
6.0	TOPOGRAPHY, GEOLOGY & HYDROGEOLOGY	5
7.0	POTENTIAL FOR CONTAMINATION/CONCEPTUAL SITE MODEL	7
8.0	SAMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY	
9.0	FIELD QUALITY ASSURANCE AND QUALITY CONTROL	
9	.1 Sampling Personnel	11
9	.2 Field Instrument Calibration	11
9	.3 Decontamination Procedures	11
9	.4 Rinsate Samples	11
9	.5 Trip Spike Samples	12
9	.6 Duplicate Samples	12
9	.7 Inter-laboratory Duplicate (Split) Samples	13
10.0	LABORATORY QUALITY ASSurance AND QUALITY CONTROL	14
11.0	ASSESSMENT CRITERIA	15
12.0	LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION	16
1	2.1 Metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), CEC& pH	16
1	2.2 Total Petroleum Hydrocarbons (TPH) and BTEX	17
1	2.3 Polycyclic Aromatic Hydrocarbons (PAH)	17
1	2.4 Organochlorine Pesticides (OCP)	17
1	2.5 Polychlorinated Biphenyls (PCB)	17
1	2.6 Asbestos	17
13.0		
14.0	LIMITATIONS	19

ii

13793/5-AA Table of Contents continued

LIST OF REFERENCES

DRAWINGS

Drawing No 13793/5-AA1	Site Features
Drawing No 13793/5-AA2	Test Pit Locations

TABLES

Table A	Rinsate Samples
Table B	Trip Spike Samples
Table C1 & C2	Duplicate Samples
Table D1 & D2	Split Samples
Table E	Heavy Metals, Cation Exchange Capacity (CEC) and pH Test Results – Composited Samples
Table F	Copper, Nickel & Zinc Test Results – Sub-Samples
Table G	Total Petroleum Hydrocarbons (TPH) & BTEX Test Results – Discrete Samples
Table H	Polycyclic Aromatic Hydrocarbons (PAH) Test Results – Discrete Samples
Table I	Organochlorine Pesticides, Polychlorinated Biphenyl & Phenol Test Results – Composited Samples
Table J	Asbestos Test Results – Discrete Samples

APPENDICES

APPENDIX A	Proposed Stage 6 Subdivision Plan
	(Drawing No SUB06 Rev. D dated 24 February 2017prepared by Urbis)
APPENDIX B	Department of Defence Records
APPENDIX C	NSW EPA Record of Notices & POEO Public Register
APPENDIX D	Table 1 - Test Pit Logs
APPENDIX E	NSW Office of Water Groundwater Bore Map
APPENDIX F	PID Calibration Sheets
APPENDIX G	Laboratory Test Certificates
APPENDIX H	Environmental Notes

1.0 INTRODUCTION

This report presents the results of a detailed contamination assessment (DCA) for the site known as Residential Development of Stage 6, located at Briar Road, Airds, in the local government area of Campbelltown, as indicated on Figure 1 below:

FIGURE 1

Map Data ©2017 Google

The site is proposed for residential subdivision development, i.e., standard residential (with garden/accessible soil) land use. The proposed subdivision plan for the Stage 6 is included in Appendix A of this report.

This assessment was based on site historical data presented in the Preliminary Site (Contamination) Investigation report prepared by JBS Environmental Pty Ltd (JBS) in March 2009.

The objectives of the assessment were to determine the contamination status of the site and to assess the suitability of the site for the proposed land use.

This report was prepared generally in accordance with the NSW Environment Protection Authority (EPA), "Guidelines for Consultants Reporting on Contaminated Sites" - 2011 and to satisfy Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy No. 55 – Remediation of Land.

2.0 SCOPE OF WORK

In order to achieve the objective of this assessment, the following scope of work was conducted:

- Updating of the following desktop study;
 - Historical Aerial Photographs
 - Department of Defence Records
 - > NSW EPA Records
 - Soil and Geological Maps
 - > NSW Office of Water Groundwater Bore Information
- An inspection to identify the site conditions and any areas of potential environmental concern based on visual and olfactory indicators of potential contamination.
- Recovery of samples for appropriate chemical analysis.
- A calibrated Photo-Ionisation Detector (PID) was used to screen the recovered soil samples for the presence of any volatile organic compounds (VOC).
- Preparation and analysis of standard quality assurance (QA) and quality control (QC) samples.
- Assessment of the laboratory analytical results.
- Assessment of field and laboratory QA and QC.
- Assessment of the contamination status of the site.

3.0 SITE IDENTIFICATION

The site is located on the southern side of Briar Road, Airds, in the local government area of Campbelltown and comprises part of a parcel of land, currently registered as Lot 11 in DP1176190, Lots 1 & 2 in DP1191996, Lots 37, 39 & 40 in DP261258 and Lots 381 to 383 in DP1056580.

As shown on Drawing No 13793/5-AA1, the site is irregular in shape, and based on information provided by Urban Growth NSW the site covers an area of approximately 7.11 hectares (ha).

4.0 PREVIOUS CONTAMINATION ASSESSMENT & SITE HISTORY UPDATE

JBS carried out preliminary site (contamination) investigation for the Airds Bradbury Renewal Project including the site in 2009. This section presents a summary of the scope of work involved in the investigation and the subsequent findings and recommendations.

The scope of work included a desktop study of site history, soils, geological and regional groundwater information, a site inspection, as well as limited soil sampling and laboratory testing.

A review of aerial photographs taken in 1947, 1961, 1970, 1979, 1984, 1994 and 2005 revealed that the site was part of a large parcel of a vacant undeveloped rural land with tree or grass covered and with no specific usage noted prior to 1970s. The eastern portion of the site was developed into residential (public housing) land use in late 1970s. Waterhouse Place was formed in the top eastern portion and along the eastern boundary of the site.

EOTECHNIQUE

All the aerial photographs indicate that Briar Road borders the site to north. The adjacent south eastern property was a rural residential land and the remaining adjoining properties were part of a large parcel of a vacant undeveloped rural land with tree or grass covered and with no specific usage noted prior to the 1970s. The adjoining properties were developed into residential (public housing) and Reiby Juvenile Justice Centre in late 1970s. A dam located in the adjoining western property was evident in the 1961 and 1970 aerial photographs. The dam was backfilled in late 1970s when the public houses were built in the area. Merino Crescent was formed immediately to the south of the site.

The NSW EPA (formerly Department of Environment and Climate Change (DECC)) maintains record of notices for contaminated lands under Section 58 of the CLM Act 1997. The notices relate to investigation and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the Contaminated Land Management (CLM) Act 1997.

The EPA issues environment protection licences to owners or operators of various industrial premises under the Protection of the Environment Operations (POEO) Act 1997 to control the air, noise, water and waste impacts of an activity.

A search was undertaken on 19 March 2009 through the NSW DECC's public register. The search identified that there have been no notices and records issued under the CLM Act 1997 and under the POEO Act 1997 for the site.

No heritage item was identified at the site through a search of the Australian Heritage Trust database and the NSW Heritage Inventory.

A historical title search and a Section 149 Planning Certificate review had been undertaken on selected lots at the land including the site. Targeted lots were based on the aerial photographic evidence for potential areas of contamination hotspots (rural, residential, industrial areas). There were three lots selected; however, they were not located within the site.

Based on the site history and site inspection, the following areas of environmental concern (AEC) and associated contaminants of potential concern (COPC) had been identified:

AEC	СОРС
The existing residential buildings	 Heavy Metals Asbestos
Fill material historically used across the site	 Heavy Metals TPH & BTEX PAH OCP/OPP Polychlorinated Biphenyls (PCB) Asbestos

Limited soil sampling and testing was undertaken, targeting as far as practicable (within the limitations of site access constraints) identified areas of environmental concern. The laboratory test results revealed that the concentrations of metals, TPH, BTEX, PAH, OCP, OPP or PCB were below the adopted criteria indicating that these did not pose a widespread contamination issue in the part of the site which were accessible for sampling. Asbestos fibres were not reported in any soil sample selected for analysis.

However, the investigation had identified that the main contamination issue at the Airds Bradbury Renewal Project including the site was asbestos, which was present as fragments of asbestos containing material (ACM) on the ground surface and in fill materials in the other investigation areas for the Project. The extent of asbestos impact at the Project including the site would require to be assessed through a detailed site investigation process, and appropriate remediation/management plans developed to outline the steps required to make the land suitable for the proposed development.

JBS recommended that, when the Concept Plan is finalised and Stages of the Plan identified, a detailed site investigation be undertaken based on the findings of the preliminary investigation for each development stage. Where a detailed site investigation identifies contamination at levels which pose a risk under the proposed land use(s), then these are required to be addressed through the planning process in accordance with current regulatory requirements.

The following desktop study was updated through the information obtained by Geotechnique.

Aerial Photographs

Aerial photographs taken in 2009, 2010, 2013, 2015 and 2017 were examined. Copies of the aerial photographs are kept in the offices of Geotechnique and are available for examination upon request.

Review of the aerial photographs revealed that the site appears essentially unchanged since 2009.

Houses in the adjoining northern property across Briar Road were demolished in 2009 or earlier and replaced with new buildings in 2010. The adjoining properties have not changed notably since 2010.

Department of Defence Records

An enquiry was made to Land and Property Information NSW to ascertain whether any ordnance-related contamination is recorded for the site.

The Department of Defence advises that there is no record of land within this title having been used for military purposes of a nature that may have resulted in ordnance-related contamination (Appendix B of the report).

NSW EPA Record of Notices & POEO Public Register

A search of the NSW EPA records on 7 March 2017 revealed no notices issued for the site. It should be noted that the NSW EPA record for Contaminated Land does not provide a record of all contaminated lands in NSW.

A search of the POEO Public Register on 7 March 2017 found no records for the site.

Reference may be made to Appendix C for the details of the NSW EPA record of notices and the POEO Public Register.

5.0 SITE CONDITION AND SURROUNDING ENVIRONMENT

5.1 Site Condition

An Environmental Engineer and an Environmental Scientist made the following observations during site inspection for field sampling on 20 to 23 March 2017:

5

13793/5-AA Stage 6 – Briar Road, Airds

- The eastern portion of the site was occupied by residential/housing commissions' buildings primarily tiled roofing, brick/weatherboard walls.
- Several galvanised iron (GI)/timber sheds/carports were noted in the residential area.
- General domestic waste items including mattresses, plastic and metal were found randomly scattered throughout the site on the ground surface.
- Waterhouse Place is located along the eastern boundary and within the north eastern portion of the site.
- A gravel/bare ground path located in the central portion of the site was running from south to north.
- The western portion of the site, known as Dorchester Reserve, was vacant. Some areas were covered with long grass. An area with dense vegetation was noted.
- A potential fill area was observed in the western portion of the site.
- A local depression was observed and located in the central portion and western portion of the site respectively.
- There were no obvious features associated with any underground storage tanks (bowser, breather pipe, inlet valve and piping) or odour that would indicate the potential for contamination.
- There were no visible or olfactory indicators of potential contamination.
- There were no air emissions emanating from the site.

The site features are indicated on Drawing No 13793/5-AA1.

5.2 Surrounding Environment

At the time of field work, the neighbouring properties were as follows:

To the north	Briar Road, further north residential and vacant land
To the east	Reiby Juvenile Justice Centre and residential
To the south:	Merino Crescent, further south vacant land and residential
To the west:	Residential

There were no air emissions emanating from the neighbouring properties.

6.0 TOPOGRAPHY, GEOLOGY & HYDROGEOLOGY

In general, ground surface gradually slopes in direction as shown on Drawing No 13793/5-AA1.

The Geological Map of Wollongong - Port Hacking (Geological Series Sheet 9029-9129, Scale 1:100,000, Edition 1, 1985), published by the Department of Mineral Resources indicates the residual soils within the site to be underlain by Triassic Age Shale of the Wianamatta Group, comprising laminite and dark grey siltstone.

The Soil Landscape Map of Wollongong - Port Hacking (Soil Landscape Series Sheet 9029-9129, Scale 1:100,000, 1990) prepared by the Soil Conservation Service of NSW, indicates the site is located within the Blacktown Landscape area that typically consists of highly plastic and relatively impermeable residual soils.

Reference should be made to Table 1 in Appendix D for descriptions of the soils encountered during sampling. Materials encountered in the test pits are generally described as follows:

Fill	Silty Clay, brown or Sandy Clay with gravel, pale brown, was encountered in some test pit locations with thickness ranging from approximately 0.1 metres (m) to 1.2m.
Topsoil	Silty Clay, brown, with root fibres was encountered in some of the test pit locations ranging in thickness from approximately 0.2m to 0.4m.
Natural Soil	Silty Clay, brown, red mottled grey, red brown or yellow-brown mottled red

All the recovered fill samples were screened for the presence of any VOC using a calibrated PID. The PID readings were all zero, indicating that the presence of volatiles in the soils is unlikely.

Inclusion of glass pieces, metal pipe, plastic, glass, cloth, road base and/or plastic mesh bag in the fill was noted in some test pit locations.

There were no detectable odour and no obvious discolouration of the soil at the sampling locations.

Groundwater or seepage was not encountered during sampling to a maximum depth of about 2.5m below the existing ground level (EGL) at TP84 and during the short time the test pits remained open. It should be noted that fluctuations in the level of groundwater might occur due to variations in rainfall and/or other factors not evident during investigation.

Reference may be made to Drawing No 13793/5-AA2 for details of the above mentioned test pit locations.

There is no waterbody such as a creek, river or wetland close to the site. A small tributary to the Georges River is located approximately 700m to the east of the site. A local depression that might capture or divert stormwater run-off was observed within the central and western portions of the site.

As part of previous contamination investigation for the land including the site in 2009, JBS undertook a desktop review of records held by the NSW Department of Water and Energy (DWE), covering boreholes within a 3.5km radius of the centre of the land for the Airds Bradbury Renewal Project. The search revealed five bores within this radius. However, no water bearing zones, static water levels or groundwater characteristics were detailed in the bore information.

In order to update regional groundwater information, a search and review for any registered groundwater bore data within a 500m radius of the site was carried out for this assessment by Geotechnique, using the on-line Real-time data, which is managed and updated by the NSW Office of Water. However, information was not available (Appendix E of the report).

6

7.0 POTENTIAL FOR CONTAMINATION/CONCEPTUAL SITE MODEL

Based on the preceding sections, potential AEC and associated contaminants are considered to be as follows:

Potential AEC	Rational/Details	Potential Contaminants ¹
In the close vicinity of residential buildings and sheds	 Degradation of metal Possible pest control Any concealed pipes, floor tiles etc., might contain asbestos. 	 Heavy Metals OCP Asbestos
Fill	 Fill materials could have been imported from unknown sources which might be contaminated 	 Heavy Metals TPH & BTEX PAH OCP PCB Asbestos
Area(s) covered with long grass and dense vegetation	Potential fill from unknown sources and illegal dumping of waste masked by long grass and dense vegetation	> Ditto

¹ The suite of potential contaminants identified will be reviewed and added to if considered appropriate.

Off-site impact of any contaminants is generally governed by the transport media available and likely receptors. The most common transport media are water and wind, whilst receptors include uncontaminated soils, groundwater, surface waterbodies, humans, flora and fauna.

Migration of any soil contaminants to the deeper soil and/or groundwater regime would generally be via leaching from the contaminated soil, facilitated by infiltration of surface water. Given that the natural soil beneath the site is relatively impermeable (refer to Section 6.0 for the regional geology information), the potential for any contaminants migrating from the contaminated soil to the groundwater table below is considered low. Furthermore, the relatively impermeable clay layer would have minimised the potential for any contaminants migrating to deeper soil. It is considered unlikely that the groundwater regime beneath the site has been impacted by contaminants in the soils. If high levels and widespread contaminants are detected through this assessment, a groundwater assessment will be recommended.

There is no waterbody such as a creek, river or wetland close to the site. A local depression that might capture or divert stormwater run-off was observed and located in the central and western portions of the site. There is potential for off-site impact of the contaminants in the waterbody due to surface water run-off from the site, if significant chemical concentrations are detected in soil samples.

7

8

13793/5-AA Stage 6 – Briar Road, Airds

8.0 SAMPLING & ANALYSIS PLAN AND SAMPLING METHODOLOGY

Sampling and analyses for the assessment were carried out to obtain a reasonable assessment of the following:

- 1. Nature and location of any soil contaminant(s) within the site.
- 2. The risk(s) that the contaminant(s) (if present) poses to human health and/or the environment under the conditions of the proposed land use.

The risk of harm to human health and the environment was determined through comparison of test results with EPA produced or endorsed criteria available at the time, as discussed in Section 11.0 of this report.

Sampling across the site was carried out on 20 to 23 March 2017 by our Environmental Engineer Saurabh Sapkota and Environmental Scientist Justin Hofmann.

Based on the "Sampling Design Guidelines for Contaminated Sites" 1995 EPA, for a site area of approximately 7.11ha, eighty six sampling points are required. Test pits TP1 to TP86 were located across the entire site. A number of test pits were located in the observed potential fill area. Five (5) test pits TP14, TP25, TP26, TP40 and TP51 could not be excavated due to access constraints. Therefore, an additional 5 sampling points will be required after demolition and removal of the site features, in order to check for the presence or otherwise of fill materials and to comply with the Guidelines.

Reference may be made to Drawing No 13793/5-AA2 for details of the above-mentioned test pit and sample locations.

Prior to sampling the test pit locations were scanned by a services locator in order to avoid any underground services.

The sampling procedures adopted were as follows:

- The majority of sample locations were excavated to a predetermined depth using an excavator. The sample was then recovered from the excavator bucket using a stainless steel trowel.
- The stainless steel trowel were decontaminated prior to use, in order to prevent cross contamination (refer to Section 9.3 for details of the procedures for decontamination of the trowel).
- The soil sample was immediately transferred to a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was then placed in a chilled container.
- Soil samples were also recovered for head space screening for the presence of VOC using a calibrated PID.

A soil sample for PID screening was placed in an airtight polyethylene bag, ensuring enough air space ('headspace') above the sample is present to be screened in the field. The soil sample remained in the bag for approximately 15 minutes before being shaken (to thoroughly mix soil with the air in the headspace) and a PID reading recorded. The PID readings were all equal to 0.0ppm. A copy of PID calibration sheets is presented in Appendix F.

• The recovered soil sample for asbestos testing was transferred into a small plastic bag.

9

13793/5-AA Stage 6 – Briar Road, Airds

In order to ensure the analytical performance of the primary laboratory, duplicate and split samples were prepared for analyses. Samples were kept in a labelled laboratory supplied glass jars (acid-washed and solvent-rinsed) and sealed with an airtight screw top Teflon lids. The fully filled jars were placed in a chilled container.

A rinsate water sample was collected and placed in a glass bottle and vial supplied by the laboratory at completion of the field work (one each day). The fully filled bottle and vial were labelled and placed in a chilled container.

At completion of field sampling, the chilled container was transported to our Penrith office and the chilled container was transferred to a refrigerator where the temperature was maintained below 4°C.

The primary samples and QA/QC samples in the chilled container with trip spike samples and plastic bags were forwarded under Chain of Custody (COC) condition to the primary testing laboratory of SGS Environmental Services (SGS). Inter-laboratory duplicate (split) samples were forwarded to the secondary testing laboratory of Envirolab Services Pty Ltd (Envirolab). Both SGS and Envirolab are National Association of Testing Authorities (NATA) accredited.

On receipt of the samples and COC, the laboratories returned the Sample Receipt Advice verifying the integrity of all samples received.

Most of the discrete soil samples were composited in the laboratory for chemical analysis. Compositing of soil samples is suggested in "Sampling Design Guidelines for Contaminated Sites"-1995, EPA.

The methodology for compositing samples was generally adapted from "*Composite Sampling, National Environmental Health Forum Monographs, Soil Services No 3*", 1996-William H Lock, as follows:

- Three equal-mass constituent samples were included in a composite sample.
- Each constituent sample was homogenised before sub-sampling and compositing of material was undertaken.

The following table details the compositing undertaken by the laboratories, as specified in the COC prepared by Geotechnique:

Composite Sample	Sub-Samples
C601	TP1 (0-0.15m) + TP2 (0-0.15m) + TP8 (0-0.15m)
C602	TP3 (0-0.15m) + TP7 (0-0.15m) + TP10 (0-0.15m)
C603	TP4 (0-0.15m) + TP5 (0-0.15m) + TP13 (0-0.15m)
C604	TP6 (0-0.15m) + TP11(0-0.15m) + TP12 (0-0.15m)
C605	TP9 (0-0.15m) + TP19 (0-0.15m) + TP21 (0-0.15m)
C606	TP15 (0-0.15m) + TP22 (0-0.15m) + TP24 (0-0.1m)
C607	TP16 (0-0.15m) + TP18 (0-0.15m) + TP30 (0-0.15m)
C608	TP17 (0-0.15m) + TP23 (0-0.15m) + TP27 (0-0.15m)
C609	TP20 (0-0.15m) + TP31 (0-0.15m) + TP32 (0-0.15m)
C610	TP28 (0-0.15m) + TP38 (0-0.15m) + TP42 (0-0.15m)
C611	TP29 (0-0.15m) + TP36 (0-0.15m) + TP37 (0-0.15m)
C612	TP33 (0-0.15m) + TP34 (0-0.15m) + TP46 (0-0.15m)

Composite Sample	Sub-Samples
C613	TP35 (0-0.15m) + TP44 (0-0.15m) + TP49 (0-0.15m)
C614	TP39 (0-0.1m) + TP41 (0-0.15m) + TP52 (0-0.15m)
C615	TP45 (0-0.15m) + TP47 (0-0.15m) + TP48 (0-0.15m)
C616	TP23 (0.3-0.4m) + TP43 (0-0.15m) + TP52 (0.4-0.5m)
C617	TP50 (0-0.1m) + TP53 (0-0.1m) + TP54 (0-0.1m)
C618	TP55 (0-0.15m) + TP62 (0-0.1m) + TP63 (0-0.15)
C619	TP56 (0-0.15m) + TP57 (0-0.15m) + TP58 (0-0.15m)
C620	TP59 (0-0.15m) + TP60 (0-0.15m) + TP61 (0-0.15m)
C621	TP64 (0-0.15m) + TP66 (0-0.15m) + TP74 (0-0.15m)
C622	TP65 (0-0.15m) + TP76 (0-0.1m) + TP78 (0-0.1m)
C623	TP68 (0-0.15m) + TP69 (0-0.15m) + TP70 (0-0.15m)
C624	TP71 (0-0.15m) + TP79 (0-0.15m) + TP83 (0-0.15m)
C625	TP72 (0-0.15m) + TP73 (0-0.15m) + TP80 (0-0.15m)
C626	TP77 (0-0.1m) + TP84 (0-0.15m) + TP85 (0-0.15m)
C627	TP81 (0-0.15m) + TP82 (0-0.15m) + TP86 (0-0.15m)
C628	TP84 (0.5-0.8m) + TP84 (1.0-1.3m) + TP84 (1.5-1.8m)

Based on site observation, the soil profiles encountered and the potential for contamination/conceptual site model presented in Section 7.0, the following laboratory analysis plan was implemented:

- All the composited samples C601 to C628, as well as the corresponding duplicate samples CD1 to CD3 and split samples CS1 to CS3 were analysed for metals.
- A number of topsoil, fill and natural soil sub-samples were selected for analysis of Cation Exchange Capacity (CEC) and pH.
- Seventeen composited fill and/or topsoil samples, as well as the corresponding duplicate sample CD1 and split samples CS1 were selected for analysis of OCP and PCB.

The other corresponding duplicate sample CD3 and split sample CS3 were selected for analysis of OCP.

- Five composited topsoil samples were selected for analysis of OCP for screening purposes.
- Fourteen discrete fill samples, as well as the corresponding duplicate sample X1 and split sample Z1 were selected for analysis of TPH, BTEX and PAH.
- All the fill samples were selected for analysis of asbestos for screening purposes.
- Four rinsate samples R1 to R4 for metals.
- Four trip spike samples TS1 to TS4 for BTEX.

11

13793/5-AA Stage 6 – Briar Road, Airds

9.0 FIELD QUALITY ASSURANCE AND QUALITY CONTROL

9.1 Sampling Personnel

Geotechnique undertook all the sampling associated with this assessment. The Environmental Engineer (Saurabh Sapkota) and Environmental Scientist (Justin Hofmann) from Geotechnique located sampling positions based on the project brief prepared by the Project Manager and site conditions, supervised the excavation of each sample location, logged the soil profile encountered, recovered soil samples at a frequency determined by the sampling plan (project brief), carried out insitu PID screening, preparation of QA/QC samples and packaged the samples (refer to Section 8.0).

Saurabh Sapkota and Justin Hofmann have undergone supervised training in Geotechnique procedures for sampling and logging.

9.2 Field Instrument Calibration

As stated in Section 8.0, a calibrated PID was used in the field to screen for the presence of volatile compounds in the recovered samples (head space screening). The PID was calibrated on-site before use (once each day). A copy of the PID calibration sheets is included in Appendix F of this report.

9.3 Decontamination Procedures

Soil sampling was in general carried out using an excavator. A stainless steel trowel was used to transfer the soil sample from the bulk bucket sample to the laboratory supplied glass jar and plastic bag. Decontamination of the trowel involved the following:

- Removal of soil adhering to the trowel by scrubbing with a brush.
- Washing the trowel thoroughly in a solution of phosphate free detergent (Decon 90) using brush.
- Rinsing the trowel thoroughly with distilled water.
- Repeating the washing/rinsing steps and rinsing with distilled water.
- Drying the trowel with clean disposable towels.

A sample of the final rinsate water sample (Bucket 3) was recovered at completion of sampling (one each day).

9.4 Rinsate Samples

Rinsate water samples (Rinsate R1 to R4) were recovered at the end of field work (one each day) in order to identify possible cross contamination between the sampling locations.

The rinsate water samples were analysed for Metals. The test results for the rinsate water samples are summarised in Table A. A copy of the laboratory analytical reports is included in Appendix G of this report.

As shown in Table A, all concentrations of analytes in the rinsate samples were in general less than laboratory limits of reporting (LOR), which indicates that adequate decontamination had been carried out in the field.

9.5 Trip Spike Samples

Trip spike sample was obtained from the laboratory on a regular basis, prior to conducting field sampling where volatile substances are suspected. The samples are held in the Penrith office of Geotechnique, at less than 4°C, for a period of not more than fourteen days. During the field work, the trip spike sample was kept in the chilled container with soil samples recovered from the site. The trip spike sample was then forwarded to the primary laboratory together with the soil samples recovered from the site.

The laboratory prepared the trip spike by adding a known amount of pure petrol standard to a clean sand sample. The sample was mixed thoroughly to ensure a relatively homogenous distribution of the spike throughout the sample. When the sample was submitted for analysis, the same procedure was adopted for testing as for the soil samples being analysed from the site.

The purpose of the trip spike is to detect any loss or potential loss of volatiles from the soil samples during field work, transportation, sample extraction or testing.

Trip spike samples (TS1 to TS4) were forwarded to the primary analytical laboratory with the samples collected from the site and tested for BTEX. The test results for the trip spike samples, reported as a percentage recovery of the applied and known spike concentrations, are shown in Table B. A copy of the laboratory analytical reports is included in Appendix G of this report.

As indicated in Table B, the results show a good recovery of the spike concentrations, ranging between 70% and 98%. Furthermore, all BTEX results were less than laboratory LOR and there was no visible or olfactory indication of hydrocarbon contamination.

Based on the above, it is considered that any loss of volatiles from the recovered samples that might have occurred would not affect the outcome/conclusion of this report.

9.6 Duplicate Samples

A field duplicate sample was prepared in the field through the following processes:

- A larger than normal quantity of soil was recovered from the sample location selected for duplication.
- The sample was placed in a decontaminated stainless bowl and divided into two portions, using the decontaminated trowel.
- One portion of the soil sample was immediately transferred, using the decontaminated trowel, into a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was labelled as the duplicate sample and immediately placed in a chilled container.
- The remaining portion was stored in the same way and labelled as the original sample.

Where original samples are to be composited, the sub-samples of that composite are duplicated and submitted blind to the laboratory. Those sub-sample duplicates are then composited as requested in the COC, and the results reported as a single duplicate.

Duplicate samples were prepared on the basis of sample numbers recovered during the field work. The duplicate sample frequency was computed using the total number of samples analysed as part of this assessment. The duplicate sample frequencies computed are as follows:

•	Metals:	28 samples analysed;	3 duplicates;	11% frequency
•	TPH, BTEX & PAH:	14 samples analysed;	1 duplicate;	7% frequency
•	OCP:	22 samples analysed;	2 duplicates;	9% frequency
•	PCB:	17 samples analysed;	1 duplicate;	6% frequency

The duplicate frequency adopted complies with Schedule B3 Guideline on Laboratory Analysis of Potentially Contaminated Soils of the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 (April 2013), which recommends a duplicate frequency of at least 5%.

The laboratory test results are summarised in Tables C1 and C2. A copy of the laboratory analytical reports is included in Appendix G of this report.

A comparison was made of the laboratory test results for the duplicate sample with the original sample and the Relative Percentage Differences (RPD) was computed to assess the accuracy of the laboratory test procedures. RPD within 30% are generally considered acceptable. However, this variation can be higher for organic analysis than for inorganics and for low concentrations of analytes or non-homogeneous samples.

As shown in Tables C1 and C2, the comparisons between the duplicate and corresponding original sample indicated generally acceptable RPD, with the exception of As (33%), Cu (35%) and Ni (58%) in Table C2, which were in excess of 30%, mainly due to the low concentrations of As detected and/or the non-homogeneous nature of the soil samples.

All the concentrations with RPD in excess of 30% in the duplicate pairs were both less than the relevant assessment criteria.

Based on the above, the variations are not considered critical. Based on the overall duplicate sample numbers and comparisons, it is concluded that the test results provided by the primary laboratory SGS are of adequate accuracy and reliability for this assessment.

9.7 Inter-laboratory Duplicate (Split) Samples

The inter-laboratory duplicate (split) samples provide a check on the analytical performance of the primary laboratory. The split samples were prepared in the same manner as the duplicate sample. Reference should be made to Section 9.6. The split samples were forwarded to a secondary laboratory (Envirolab) for analysis.

Where original samples were to be composited (with the composite sample selected for split), the subsamples of that composite were split and submitted blind to the laboratory. Those sub-sample splits were then composited as requested in the COC, and the results reported as a single split.

The split sample frequency was computed using the total number of samples analysed as part of this assessment. The split sample frequencies computed are as follows:

•	Metals:	28 samples analysed;	3 splits;	11% frequency
•	TPH, BTEX & PAH:	14 samples analysed;	1 split;	7% frequency
•	OCP:	22 samples analysed;	2 splits;	9% frequency
•	PCB:	17 samples analysed;	1 split;	6% frequency

14

The split sample frequency adopted complies with the Schedule B3 of the NEPM 1999 (April 2013), which recommends a frequency of 5%.

The results are summarised in Tables D1 and D2. A copy of the laboratory analytical reports and certificates of analysis is included in Appendix G of this report.

Based on Schedule B3 of the NEPM 1999 (April 2013) the difference in the results between the split samples should generally be within 30% of the mean concentration determined by both laboratories, i.e., RPD should be within 30%. However, higher variations can be expected for organic analyses compared to inorganic analyses and for samples with low analyte concentrations or non-homogeneous samples.

As shown in Tables D1 and D2 the comparisons between the splits and corresponding original samples indicated generally acceptable RPD, with the exception of RPD for metals (ranging from 34% to 115%), which were in excess of 30%, mainly due to the low concentrations of As detected and/or the non-homogeneous nature of the soil samples.

All the concentrations with RPD in excess of 30% in the split pairs were in general both less than the relevant assessment criteria, with exception of composite split pairs CS1 and C602, as well as CS3 and C623.

The split pair CS1 and C602 in Table D1 was found to have Ni concentration in the original composite sample C602 that was higher than the corresponding split composite sample CS1, and in excess of the relevant assessment criterion.

The split pair CS3 and C623 in Table D2 was found to have concentrations of Cu and Zn in the composite split sample CS3 that were higher than the corresponding original composite sample C623, and in excess of the relevant assessment criterion.

As such, the higher concentrations of Cu, Ni and Zn were adopted for the assessment and included in Table E.

Based on the above, the variations are not considered critical. Based on the overall split sample numbers and comparisons, it is concluded that the test results provided by the primary laboratory can be relied upon for this assessment.

10.0 LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

Geotechnique uses only laboratories accredited by the NATA for chemical analyses. The laboratories also incorporate quality laboratory management systems to ensure that trained analysts using validated methods and suitably calibrated equipment produce reliable results.

In addition to the quality control samples, the laboratories also ensure that all analysts receive certification as to their competence in carrying out the analysis and participate in national and international proficiency studies.

SGS and Envirolab are accredited by NATA and operate a Quality System designed to comply with ISO / IEC 17025.

15

13793/5-AA Stage 6 – Briar Road, Airds

The soil samples were in general analysed within the allowable holding times, detailed in Schedule B3 of the NEPM 1999 (April 2013). Within the allowable holding times for water detailed in Standard Methods for the Examination of Water and Wastewater (APHA) the rinsate samples were analysed.

The test methods and LOR/practical quantitation limits (PQL) adopted by the laboratories are indicated with the laboratory analytical reports/certificates of analysis. A copy of the laboratory analytical reports/certificates of analysis is included in Appendix G of this report.

As part of the analytical run for the project the laboratories included laboratory blanks, duplicate samples, laboratory control samples, matrix spikes and surrogate spikes.

The QA/QC procedures adopted by the laboratories and the results have been checked and considered to be complied with Schedule B3 of the NEPM 1999 (April 2013).

Overall, the QA/QC adopted by SGS and Envirolab indicated the analytical data to fall within acceptable levels of accuracy and precision. The analytical data provided is therefore considered to be reliable and useable for this assessment.

11.0 ASSESSMENT CRITERIA

Investigation levels and screening levels developed in the NEPM 1999 (April 2013), and the *Guidelines for the NSW Site Auditor Scheme* (NSW EPA/DEC, 2006) will be used for this assessment, as follows:

• Risk-based Health Investigation Levels (HIL) for a broad range of metals and organic substances. The HIL are applicable for assessing human health risk via all relevant pathways of exposure. The HIL as listed in Table 1A(1) of Schedule B1 "*Guideline on Investigation Levels for Soil and Groundwater*" are provided for different land uses and applicable to the top 3m of soil for residential use.

The site is proposed for residential subdivision. Therefore, with regard to human health, analytical results were assessed against risk based HIL for *residential with garden/accessible soil* (HIL A).

 Health Screening Levels (HSL) for selected petroleum compounds, fractions and Naphthalene are applicable for assessing human health risk via inhalation and direct contact pathways. The HSL depend on specific soil physicochemical properties, land use scenarios and the characteristics of building structures. The HSL listed in Table 1A(3) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" apply to different soil types and depths below surface to >4 m.

For this assessment the analytical results were assessed against the available HSL for *low density residential* (HSL A) for clay to depth of 0m to <2m.

 Ecological Screening Levels (ESL) for selected petroleum hydrocarbon compounds, TPH fractions and Benzo(a)Pyrene are applicable for assessing the risk to terrestrial ecosystems. ESL listed in Table 1B(6) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" broadly apply to coarse and fine-grained soils and various land uses and are generally applicable to the top 2m of soil.

The analytical results were assessed against the available ESL for *urban residential* for fine-grained soil (clay).

 Ecological Investigation Levels (EIL), a specific type of Soil Quality Guidelines (SQG) for selected metals and DDT, are applicable for assessing the risk to terrestrial ecosystems. EIL listed in Table 1B(1-5) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2m of soil.

For this assessment, the analytical results were assessed against the available EIL for *urban residential* land use.

For arsenic, Naphthalene and DDT, generic EIL for urban residential are adopted for aged contaminants. For other metals, EIL are the sum of the added contaminant limit (ACL) and the ambient background concentration (ABC). Where available, EIL are calculated using the EIL calculator developed by CSIRO for NEPC.

• Due to a lack of EIL for cadmium and mercury, the available Provisional Phytotoxicity Based Investigation Levels (PIL) published in the *Guidelines for the NSW Site Auditor Scheme* (NSW EPA, 2006) were used, with regard to protection of the environment and impact on plant growth.

In order to detect any potential contamination within an individual composite soil sample, an adjusted criterion is recommended for assessment of results for individual composite samples, based on Method 1, Section 6 of the EPA "*Sampling Design Guidelines*" 1995. The relevant adjusted criteria presented in the applicable tables were calculated by dividing the relevant criteria by three (i.e. three sub-samples comprised the composite). Individual composite samples will be assessed against the relevant adjusted criteria.

If the concentration of an analyte for a composite soil sample is in excess of the relevant adjusted criterion, then all sub-samples of the failed composite samples will be analysed individually. The purpose of this is to detect potentially contaminated sub-samples within the failed composite sample.

For discrete soil samples, the individual concentration of analyte will be assessed against the relevant criteria.

For asbestos, the assessed soil must not contain bonded ACM in excess of 0.01% w/w and surface soil within the site is free of visible ACM, as well as asbestos fines (AF) and fibrous asbestos (FA) in the soil is <0.001% w/w.

The soil/site will be deemed contaminated if any of the above criteria are unfulfilled. Further investigation, remediation and/or management will be recommended if the soil is found to be contaminated.

12.0 LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION

Reference may be made to Appendix G for the actual laboratory analytical reports from SGS. The laboratory test results for the soil samples analysed are presented in Tables E to J. A discussion of the test results is presented in the following sub-sections.

12.1 Metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn), CEC& pH

The lowest test results of CEC and pH of sub-samples in Table E were adopted to calculate the relevant EIL.

17

13793/5-AA Stage 6 – Briar Road, Airds

As indicated in Table E, the concentrations of metals in the composited soil samples analysed were below the Adjusted HIL A, Adjusted EIL and/or Adjusted PIL, with the exception of the highlighted concentrations of Cu, Ni and Zn.

The highlighted concentrations of Cu, Ni and Zn exceeded the Adjusted EIL but were below the Adjusted HIL A.

The sub-samples of the failed composite sample were therefore analysed for Cu, Ni and/or Zn. The test results are summarised in Table F.

As indicated in Table F, all the concentrations of Cu, Ni and Zn in the analysed sub-samples were below the HIL A and EIL adopted.

12.2 Total Petroleum Hydrocarbons (TPH) and BTEX

As presented in Table G, the concentrations of F1 (TPH C6-C10 less BTEX), F2 (TPH >C10-C16 less Naphthalene and TPH>C10-C16), F4 (TPH >C34-C40) and BTEX were below the HSL A and/or ESL adopted. The test results of F1, F2 and BTEX were also less than the laboratory LOR.

There was not limiting of HSL A for clay for Ethyl Benzene.

With the exception of concentration of F3 (TPH >C16-C34) in sample TP39 (0-0.1m), the concentrations of F3 in the remaining samples analysed were below the ESL adopted.

The concentration of F3 (TPH >C16-C34) in the sample TP39 (0-0.1m) was above the ESL. In order to determine the presence or otherwise of petroleum-based hydrocarbon, the soil samples was analysed for F3 with silica gel clean-up. The result is included in Table G.

As indicated in Table G, the concentration of F3 (TPH >C16-C34) with silica gel clean-up in the sample TP39 (0-0.1m) did not exceed the ESL and was not of concern.

12.3 Polycyclic Aromatic Hydrocarbons (PAH)

As shown in Table H, all the concentrations of BaP (TEQ), Total PAH, Naphthalene and BaP were well below the HIL A, HSL, EIL and/or ESL.

Moreover, the test results of Benzo(a)pyrene (TEQ), Naphthalene and Benzo(a)pyrene were less than the laboratory LOR. The test results of Total PAH were in general less than the laboratory LOR.

12.4 Organochlorine Pesticides (OCP)

As presented in Table I, the concentrations of OCP were well below the Adjusted HIL A, and less than the laboratory LOR. The concentrations of DDT were well below the Adjusted EIL.

12.5 Polychlorinated Biphenyls (PCB)

As summarised in Table I, the concentrations of PCB were less than laboratory LOR.

12.6 Asbestos

As indicated in Table J, no >7mm ACM was found at the LOR of 0.01% w/w and no <7mm AF/FA was found at the LOR of 0.001% w/w for all the fill samples analysed.

13.0 CONCLUSION AND RECOMMENDATIONS

The findings of this DCA are summarised as follows:

- The eastern portion of site was used as residential/housing commission, whilst the western portion of the site, known as Dorchester Reserve, was vacant. Some areas were long grass covered. An area with dense vegetation was noted. The site was occupied by a number of site features (refer to Drawing No 13793/5-AA1) at the time of sampling and site inspection.
- Based on the site history and site inspection, three areas of concern and associated contaminants of potential concern have been identified within the site as summarised in the table presented in Section 7.0 of this report.
- As discussed in Section 12.0, all the laboratory test results for the recovered samples satisfied the
 criteria for stating that the analytes selected are either not present (i.e. concentrations less than
 laboratory limits of reporting) or present in the samples at concentrations that do not pose a risk of
 harm to human health or the environment under a "residential (with garden/accessible soil)" form of
 development.
- Potential off-site impacts of contaminants on groundwater and waterbodies are considered to be low.

Based on this assessment, it is our opinion that the site can be made suitable for the proposed residential (with garden/accessible soil) land use subject to implementation of the following recommendations, prior to site preparation and earthworks:

- Additional 5 sampling points/locations where TP14, TP25, TP26, TP40 and TP51 were located will be required after complete demolition and removal of site features, in order to check for the presence or otherwise of fill materials and to comply with the "Sampling Design Guidelines for Contaminated Sites" 1995.
- Assessment (by sampling and testing) of soil in the footprints of site features such as the residential/housing commission's buildings, sheds/carports, any hardstand and sections of the existing Briar Road and Waterhouse Place, etc., will be required after complete demolition and removal and/or road closure. The purpose of this is to ascertain the presence or otherwise of "suspect" materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos, ash particles, etc.) and fill, which is different to those encountered for this assessment, to address the potential contamination as listed in the table in Section 7.0 of this report, as well as to determine the contamination status of the soil.
- Due to the presence of long grass and dense vegetation in some areas as shown on Drawing No 13793/5-AA1, potentially contaminated area(s), filled area(s), building rubble, asbestos sheet(s)/piece(s), ash materials, staining, etc. could be masked by the long grass and dense vegetation. The long grass and dense vegetation must be slashed to enable detailed site inspection. Additional sampling and testing might be required.
- In the event of contamination for the abovementioned assessments, further assessment, preparation of a Remedial Action Plan (RAP) and validation (after completion of remediation) to be undertaken by a suitably qualified person (environmental consultant) will be required.

If suspect materials are encountered during any stage of future building demolition/site preparation/earthworks (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets/pieces/pipes, ash material, etc.), we recommend that this office is contacted for assessment, and to take all necessary actions.

EOTECHNIQUE

For any materials to be excavated and removed from the site, it is recommended that waste classification of the materials, in accordance with the "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA 2014; NSW EPA resource recovery exemptions and orders under the POEO (Waste) Regulation 2014; or NSW EPA *Certification: Virgin excavated natural material* is undertaken prior to disposal at a facility that can lawfully accept the materials.

Any imported soil (fill) must be assessed by a qualified environmental consultant, prior to importation, to ensure suitability for the proposed use. In addition, the imported fill must not contain asbestos and ash, be free of unusual odour, not be discoloured and not acid sulphate soil or potential acid sulphate soil. The imported fill should either be virgin excavated natural material (VENM) or excavated natural material (ENM).

14.0 LIMITATIONS

To the best of our knowledge, all information obtained and contained in this report is true and accurate. No further investigation has been carried out to authenticate the information provided. Supporting documentation was obtained where possible, some of which is contained in this report.

This report has been prepared for Urban Growth NSW for the purpose stated within based on the agreed scope of work. Campbelltown City Council and any relevant authorities may rely on the report for development and building application assessment processes. Any reliance on this report by other parties shall be at such parties' sole risk, as the report might not contain sufficient information for other purposes.

The information in this report is considered accurate at the completion of field sampling on 20 to 23 March 2017. Any variations to the site form or use beyond that date will nullify the conclusion stated.

No contamination assessment can eliminate all risk; even a rigorous professional assessment might not detect all contamination within a site. Although the assessment conducted at the site was carried out in accordance with current NSW guidelines, the potential always exists for contaminants and contaminated soils to be present between sampled locations, in locations where possible underground services are present and in the grass/dense vegetation covered areas.

Presented in Appendix H is a document entitled "Environmental Notes", which should be read in conjunction with this report.

LIST OF REFERENCES

Composite Sampling, National Environmental Health Forum Monographs, Soil Services No 3 - William H Lock 1996

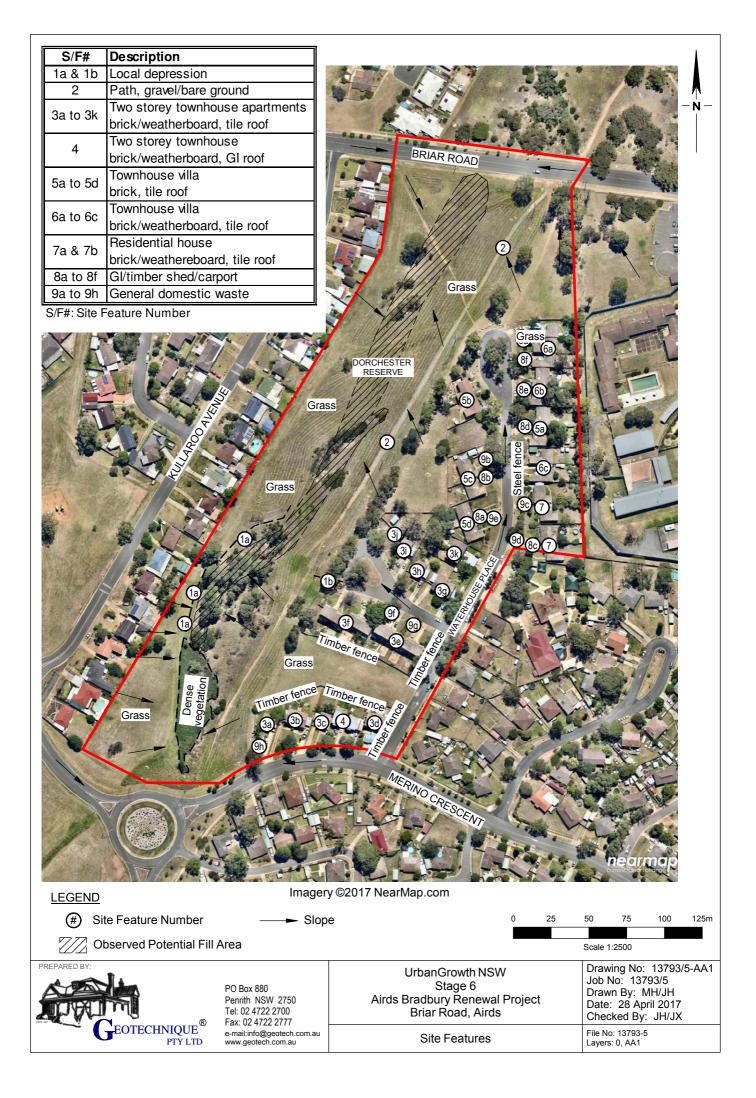
Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites – NSW Environment Protection Authority 2011

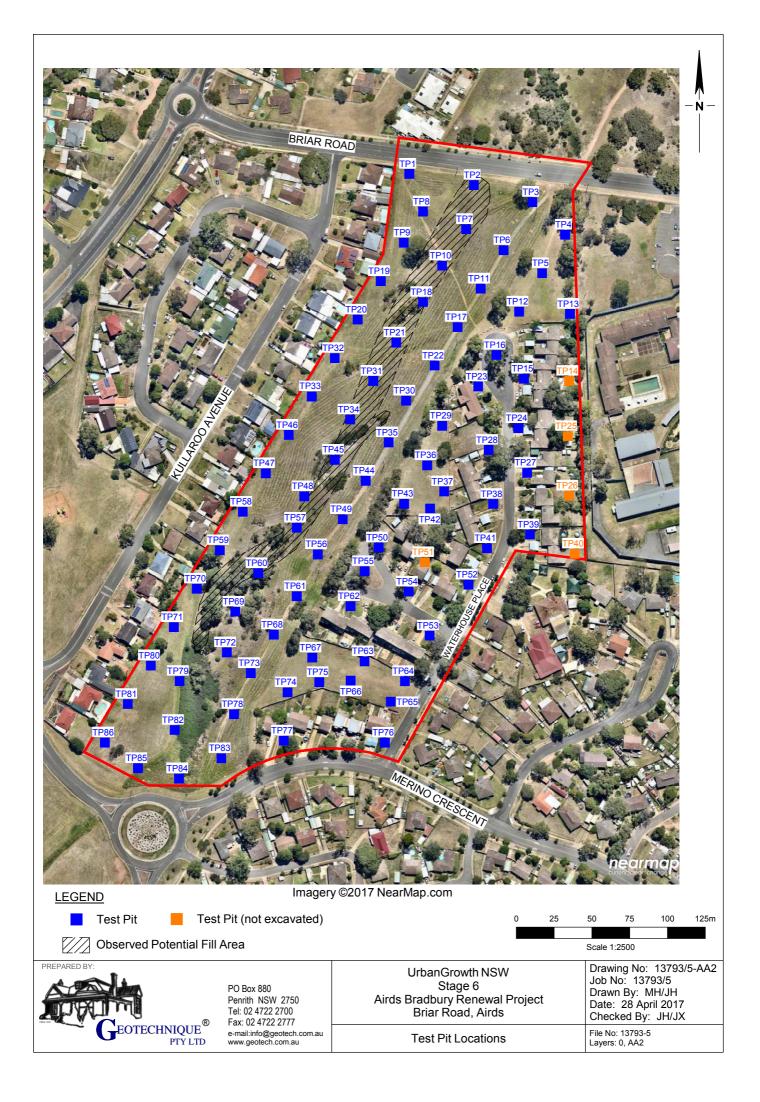
Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd Edition) – NSW DEC 2006

Contaminated Sites: Sampling Design Guidelines - NSW Environment Protection Authority 1995

Geology of Port Hacking - Wollongong 1:100,000 Sheet (9029-9129) – Geological Survey of New South Wales, Department of Mineral Resources 1985

Managing Land Contamination: Planning Guidelines SEPP 55 – Remediation of Land – Department of Urban Affairs and Planning / NSW Environment Protection Authority 1998


National Environment Protection (Assessment of Site Contamination) Measures, 1999 (April 2013) -National Environmental Protection Council


Protection of the Environment Operations Act 1997

Soil Landscape of Port Hacking - Wollongong 1:100,000 Sheet (9029-9129) – Soil Conservation Service of NSW 1990

DRAWINGS

Drawing No 13793/5-AA1 Drawing No 13793/5-AA2 Site Features Test Pit Locations

TABLES

Table A	Rinsate Samples			
Table B	Trip Spike Samples			
Table C1 & C2	Duplicate Samples			
Table D1 & D2	Split Samples			
Table E	Heavy Metals, Cation Exchange Capacity (CEC) and pH Test Results – Composited Samples			
Table F	Copper, Nickel & Zinc Test Results – Sub-Samples			
Table G	Total Petroleum Hydrocarbons (TPH) & BTEX Test Results – Discrete Samples			
Table H	Polycyclic Aromatic Hydrocarbons (PAH) Test Results – Discrete Samples			
Table I	Organochlorine Pesticides, Polychlorinated Biphenyl & Phenol Test Results – Composited Samples			
Table J	Asbestos Test Results – Discrete Samples			

TABLE A
RINSATE SAMPLES
(Ref No: 13793/5-AA)

	Rinsate R1	Rinsate R2	Rinsate R3	Rinsate R4	
ANALYTES	20/03/2017	21/03/2017	22/03/2017	23/03/2017	
METALS	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Arsenic	<0.02	<0.02	<0.02	<0.02	
Cadmium	<0.001	<0.001	0.002	0.001	
Chromium	<0.005	<0.005	<0.005	<0.005	
Copper	<0.005	<0.005	<0.005	0.006	
Lead	<0.02	<0.02	<0.02	<0.02	
Mercury	<0.0001	<0.0001	<0.0001	<0.0001	
Nickel	<0.005	<0.005	<0.005	<0.005	
Zinc	0.02	<0.01	<0.01	0.01	

TABLE B TRIP SPIKE SAMPLES (Ref No: 13793/5-AA)

ANALYTES	Trip Spike TS1	Trip Spike TS2	Trip Spike TS3	Trip Spike TS4
BTEX				
Benzene	87%	81%	88%	98%
Toluene	91%	84%	91%	70%
Ethyl Benzene	90%	87%	87%	93%
Xylenes	89%	87%	86%	91%

Note : results are reported as percentage recovery of known spike concentrations

TABLE C1 DUPLICATE SAMPLES (Ref No: 13793/5-AA)

.

	TP1	Duplicate	RELATIVE PERCENTAGE
ANALYTES	0-0.15m	X1	DIFFERENCES (RPD)
	mg/kg	mg/kg	%
TOTAL PETROLEUM HYDROCARBONS (TPH)			
F1 (C6-C10 less BTEX)	<25	<25	-
F2 (>C10-C16)	<25	<25	-
F3 (>C16-C34)	<90	<90	-
F4 (>C34-C40)	<120	<120	-
втех			
Benzene	<0.1	<0.1	-
Toluene	<0.1	<0.1	-
Ethyl Benzene	<0.1	<0.1	-
Xylenes	<0.3	<0.3	-
POLYCYCLIC AROMATIC HYDROCARBONS			
Benzo(a)Pyrene TEQ	<0.3	<0.3	-
Total PAH	<0.8	<0.8	-
Naphthalene	<0.1	<0.1	-
Benzo(a)Pyrene	<0.1	<0.1	-
		Duplicate	RELATIVE PERCENTAGE
ANALYTES	C601	CD1	DIFFERENCES (RPD)
	mg/kg	mg/kg	%
METALS			
Arsenic	6	7	15
Cadmium	0.3	0.3	0
Chromium	12	16	29
Copper	31	28	10
Lead	31	28	10
Mercury	<0.05	<0.05	-
Nickel	20	18	11
Zinc	64	68	6
ORGANOCHLORINE PESTICIDES (OCP)			
Hexachlorobenzene (HCB)	<0.1	<0.1	-
Heptachlor	<0.1	<0.1	-
Aldrin+Dieldrin	<0.15	<0.15	-
Endrin	<0.2	<0.2	-
Methoxychlor	<0.1	<0.1	-
Mirex	<0.1	<0.1	-
Endosulfan (alpha, beta & sulphate)	<0.5	<0.5	-
DDD+DDE+DDT	<0.6	<0.6	-
Chlordane (alpha & gamma)	<0.2	<0.2	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<1	<1	-

TABLE C2 DUPLICATE SAMPLES (Ref No: 13793/5-AA)

•

	1 10. 1373	Duplicate	RELATIVE PERCENTAGE
ANALYTES	C611	CD2	DIFFERENCES (RPD)
	mg/kg	mg/kg	%
METALS			
Arsenic	6	5	18
Cadmium	<0.3	<0.3	-
Chromium	9.6	10	4
Copper	20	14	35
Lead	22	25	13
Mercury	<0.05	<0.05	-
Nickel	18	9.9	58
Zinc	53	46	14
		Duplicate	RELATIVE PERCENTAGE
ANALYTES	C619	CD3	DIFFERENCES (RPD)
	mg/kg	mg/kg	%
METALS			
Arsenic	7	5	33
Cadmium	0.3	0.3	0
Chromium	11	9.2	18
Copper	22	17	26
Lead	28	27	4
Mercury	<0.05	<0.05	-
Nickel	13	13	0
Zinc	77	69	11
ORGANOCHLORINE PESTICIDES (OCP)			
Hexachlorobenzene (HCB)	<0.1	<0.1	-
Heptachlor	<0.1	<0.1	-
Aldrin+Dieldrin	<0.15	<0.15	-
Endrin	<0.2	<0.2	-
Methoxychlor	<0.1	<0.1	-
Mirex	<0.1	<0.1	-
Endosulfan (alpha (I), beta (II) & sulphate)	<0.5	<0.5	-
DDD+DDE+DDT	<0.6	<0.6	-
Chlordane (alpha & gamma)	<0.2	<0.2	-

TABLE D1 SPLIT SAMPLES (Ref No: 13793/5-AA)

		RELATIVE PERCENTAGE
		DIFFERENCES (RPD)
(SGS)	(ENVIROLAB)	%
<25	<25	-
<25	<50	-
<90	<100	-
<120	<100	-
<0.1	<0.2	-
<0.1	<0.5	-
<0.1	<1	-
<0.3	<3	-
<0.3	<0.5	-
<0.8	<1.55	-
<0.1	<0.1	-
<0.1	<0.05	-
	Culit Comula	
0000		
		DIFFERENCES (RPD)
(SGS)	(ENVIROLAB)	%
0	0	10
_	-	40
		-
		18
		5
	-	16
		-
	-	59
52	48	8
<0.1	<0.1	-
	-01	_
<0.1		-
<0.15	<0.2	-
	<0.2 <0.1	-
<0.15	<0.2	-
<0.15 <0.2	<0.2 <0.1	
<0.15 <0.2 <0.1	<0.2 <0.1 <0.1	
<0.15 <0.2 <0.1 <0.5	<0.2 <0.1 <0.1 <0.3	
<0.15 <0.2 <0.1 <0.5 <0.6	<0.2 <0.1 <0.1 <0.3 <0.3	
	TP10 0-0.15m mg/kg (SGS) <25	0-0.15m Z1 mg/kg mg/kg (SGS) (ENVIROLAB) <25

TABLE D2 SPLIT SAMPLES (Ref No: 13793/5-AA)

		Split Sam ple	RELATIVE PERCENTAGE
ANALYTES	C612	CS2	DIFFERENCES (RPD)
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
METALS			
Arsenic	6	9	40
Cadmium	0.3	<0.4	-
Chromium	9.3	18	64
Copper	26	71	93
Lead	25	32	25
Mercury	<0.05	<0.1	-
Nickel	12	17	34
Zinc	78	290	115
		Split Sample	RELATIVE PERCENTAGE
ANALYTES	C623	CS3	DIFFERENCES (RPD)
	mg/kg	mg/kg	
	(SGS)	(ENVIROLAB)	%
METALS			
Arsenic	4	7	55
Cadmium	<0.3	<0.4	-
Chromium	5.7	11	63
Copper	14	21	40
Lead	27	21	25
Mercury	<0.05	<0.1	-
Nickel	4.5	8	56
Zinc	35	56	46
ORGANOCHLORINE PESTICIDES (OCP)			
Hexachlorobenzene (HCB)	<0.1	<0.1	-
Heptachlor	<0.1	<0.1	-
Aldrin+Dieldrin	<0.15	<0.2	-
Endrin	<0.2	<0.1	-
Methoxychlor	<0.1	<0.1	-
Endosulfan (alpha (I), beta (II) & sulphate)	<0.5	<0.3	-
DDD+DDE+DDT	<0.6	<0.3	-
Chlordane (alpha & gamma)	<0.2	<0.2	-

	-		(Ref	No: 13	793/5-/	AA)								
						META	LS (mg/	/kg)						
Composite Number	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	COPPER	LEAD	MERCURY	NICKEL	NICKEL	NICKEL	ZINC	ZINC	CEC (cmq/kg) *	* Hd
C601	6	0.3	12	31	-	31	<0.05	-	-	20	64	-	22	8.2 (TP1)
C602	9	0.3	12	21	-	27	<0.05	11	-	- 20	52	-	22	0.2 (1P1)
C603	7	0.4	11	14	-	24	<0.05		- 10	2	44	-	6.0	- 6.0 (TP4)
C604	9	<0.3	7	22	-	18	<0.05	-	6.7	2	56	-	12	6.7 (TP6)
C605	7	<0.3 0.4	, 11	22	-	30	<0.05	2	16		62	-	8.6	6.3 (TP21)
C606	7	<0.4	9.8	21	-	30 25	<0.05	-	9.7	-	76	-	0.0 12	6.7 (TP15)
C607	6	< 0.3	9.8 10	13	-	20	<0.05	2	9.7 8.9		37	-	8.2	6.2 (TP18)
C608	7	<0.3 0.3	9.9	13	-	20 36	<0.05	12	0.9 -	-	57 64	-	0.2	0.2 (IFIO) -
C609	8	0.3	9.9 14	21	-	36 39	<0.05	-	- 15		- 64	- 120	- 18	- 6.8 (TP20)
C610	° 7	<0.5	14	18	-	39	<0.05	9.7	-		- 49	-	10	0.0 (1F20)
C610	6	<0.3 <0.3	9.6	20	-	32 22	<0.05	9.7	- 18		49 53	-	- 13	- 6.9 (TP29)
C612	6	<0.3 0.3	9.6 9.3	20 26	-	22 25	<0.05	-	18		- 53	- 78	9.1	6.9 (TP29) 5.9 (TP33)
(Split CS2 = C612)	9	<0.3	9.3 18	-	- 71	32	<0.03		17			290	-	3.9 (1F33)
		<0.4 <0.3	8.1	- 22		32 25	<0.1	-	14		-	290 91	10	- C 4 (TD40)
C613 C614	7 6	<0.3 <0.3	8.1 9.5	22 14	-	25 33	<0.05	-	14	-	- 63	- 91	10	6.4 (TP49) 6.5 (TP39)
C615	7	<0.3 0.3	9.5 12	14	-	33 27	<0.05	-	13		58	-	8.4	6.2 (TP39) 6.2 (TP45)
			9.4		-				-	-		-	6.2	
C616 C617	4 6	<0.3 <0.3	9.4 9.3	6.8 20	-	15 36	<0.05 <0.05	4.5 -	- 7.3		24 82	-	6.2 14	8.3 (TP52)
	5				-	36 23	<0.05		7.3		82 55	-	14	7.1 (TP50)
C618		<0.3	9.3 11	14 22	-	23 28		o.5 -				-	19	- 0.7 (TD:0)
C619 C620	7 6	0.3 0.3	10	22	-	28 29	<0.05 <0.05	-	13 11		77 60	-	8.9	6.7 (TP58) 6.0 (TP59)
				20 310	-				-			-	8.9	6.0 (1959)
C621	6	<0.3	11		-	22	< 0.05				58	-		- 7 0 (TD7C)
C622	6	0.3	9.6 5.7	22	-	26	< 0.05	-	8.4		68	-	14	7.8 (TP76)
C623	4 5	<0.3	5.7 8.8	14	-	27	<0.05	-	4.5		35	-	7.4	5.7 (TP68)
C624		<0.3		14	-	25	< 0.05	-	10		38	-	6.9	6.1 (TP71)
C625 C626	5 6	0.4 <0.3	8.8 9.9	16	-	23 27	< 0.05	-	11 9.9		70 51	-	8.9 12	6.1 (TP80)
	7		9.9 9.7	18	-		< 0.05	13	9.9			-		7.3 (TP84)
C627 C628	5	0.3 <0.3	9.7 9.7	17 18	-	27 18	<0.05 <0.05	8.0	-		42 45	-	3.8	5.9 (TP81)
														-
Limits of Reporting (LOR)	3	0.3	0.3	0.5	0.5	1	0.01	0.5	0.5	0.5	0.5	0.5	0.02	-
NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013)			ŕ	ŕ										
Health-based Investigation Levels (HIL) A - Residential A	100	20	100	6000	6000	300	10 ^g	400	400	400	7400	7400		
Adjusted HIL ^b	33	7	33	2000	2000	100	3	133	133	133	2467	2467		
	h		i	j	k	1000	I	° c	m	n	050 ^C	0		
Ecological Investigation Levels (EIL) - Urban residential	100	-	400	110	210	1200	-	20	55	290	250	430		
Adjusted EIL ^d	33	-	133	37	70	400	-	7	18	97	83	143		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)														
Provisional Phytotoxity-Based Investigation Levels (PIL)		3					1							
Adjusted PIL ^e		1					0.33							
Adjusted PIL ^e	1	1					0.33							

Notes: a: Residential with garden / accessible soil (home grow n produce <10% fruit and vegetable intake (no poultry)), also includes

childcare centres, preschools and primary schools.

b: Adjusted HIL=HIL/3

c: ElL of aged chromium(III), copper, nickel & zinc w ere derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=3.8 cmolc/kg and pH=5.7 of the sub-sample w ere selected for derivation of ElL; a conservative approach.

d: Adjusted EIL=EIL/3

e: Adjusted PIL=PIL/3

f: Chromium (VI)

g: Methyl Mercury

h: Generic ElL for aged arsenic

i: Chromium (III); the assumed clay content=10%, a conservative assumption.

j: EIL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=95mg/kg, the low er ACL used based on the low est CEC=5cmol/kg or pH=6.0.

k: EL = Ambient Background Concentration (ABC) + Added Contaminant Level (ACL) (Rounding rules applied). ABC = 18mg/kg, 25th percentile of the data for old NSW suburb with low traffic volume. ACL=190mg/kg, the low er ACL used based on the CEC=10cmol/kg or pH=6.0.

I: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

m: ElL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=6.0 cmolc/kg of the sub-sample was selected for derivation of ElL; a conservative approach.

n EIL of aged nickel was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the CEC=22 cmolc/kg of the sub-sample was adopted for derivation of EIL.

o: EIL of aged zinc was derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; the low est CEC=9.1 cmolc/kg and pH = 5.9 of sub-sample was adopted for derivation of EIL; a conservative approach.

*: CEC & pH of sub-sample

TABLE F COPPER, NICKEL & ZINC TEST RESULTS SUB-SAMPLES (Ref No: 13793/5-AA)

		(Ref No: 13/93/5-AA)				
			COPPER	COPPER	NICKEL	ZINC
Composite Number	Sub-Sample	Depth (m)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	TP3	0-0.15	-	-	5.3	-
	TP7	0-0.15	-	-	14	-
C602	TP10	0-0.15	-	-	6.6	-
	TP17	0-0.15	-	-	12	-
	TP23	0-0.15	-	-	8.0	-
C608	TP27	0-0.15	-	-	5.9	-
	TP28	0-0.15	-	-	8.3	-
	TP38	0-0.15	-	-	8.9	-
C610	TP42	0-0.15	-	-	12	-
	Z4 (=TP34	0-0.15)	-	21	-	68
	Z5 (=TP33	0-0.15)	-	120	-	360
Split CS2 (=C612)	Z6 (=TP46	0-0.15)	-	28	-	81
	TP55	0-0.15	-	-	8.7	-
	TP62	0-0.1	-	-	7.7	-
C618	TP63	0-0.15	-	-	6.7	-
	TP64	0-0.15	15	-	6.4	-
	TP66	0-0.15	11	-	9.8	-
C621	TP74	0-0.15	13	-	14	-
	TP81	0-0.15	-	-	8.0	-
	TP82	0-0.15	-	-	14	-
C627	TP86	0-0.15	-	-	8.0	-
	TP84	0.5-0.8	-	-	9.2	-
	TP84	1.0-1.3	-	-	12	-
C628	TP84	1.5-1.8	-	-	8.4	-
Limit of Reporting (LOR)			0.5	0.5	0.5	0.5
NATIONAL ENVIRONME	INT PROTECTION AME	NDMENT MEASURE (2013)				
Health-based Investigation	on Levels (HIL) A ^a Resi	dential A	6000	6000	400	7400
Ecological Investigation L	evel (EIL) ^b		110	210	20	430

Notes:

a: Residential with garden / accessible soil (home grow n produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres,
b: refer to Table E for the ElL values adopted.

TABLE G TOTAL PETROLEUM HYDROCARBONS (TPH) AND BTEX TEST RESULTS DISCRETE SAMPLES (Ref No: 13793/5-AA)

	DISCRETE SAMPLES																								
									(Ref	No: 1	3793	/5-A/	4)												
													NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013)												
			TPH (mg/kg) BTEX (mg/kg)				Health Screening Levels (HSL) A Low density residential Urban residential						1e-												
Sample Location	Depth (m)	Soil type	F1	F2*	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	F1	F2*	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	F1	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
TP1	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP6	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1		<0.1	<0.3		280	0.7	480	NL	110				5600		105		45
TP10	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1		<0.1	<0.3		280	0.7	480	NL	110				5600		105		45
TP15	0-0.1	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3		280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP23	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP33	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP39	0-0.1	Clay	<25	<25	<25	2000	2900	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP39 #	0-0.1	Clay	-	<25	<25	1300	2200	-	-	-	-	50	280	-	-	-	-	180	120	1300	5600	-	-	-	-
TP49	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP52	0.4-0.5	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP50	0-0.1	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP59	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP68	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP76	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
TP80	0-0.15	Clay	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	50	280	0.7	480	NL	110	180	120	1300	5600	65	105	125	45
Limits of F	Reporting	(LOR)	25	25	25	90	120	0.1	0.1	0.1	0.3														

Notes: F1: C6-C10 less BTEX

F2*: >C10-C16 less Naphthalene

F2**: >C10-C16

F3: >C16-C18

F4: >C34-C40

NL: Not Limiting

#: Test results of TPH with a silica gel clean-up

TABLE H POLYCYCLIC AROMATIC HYDROCARBONS (PAH) TEST RESULTS DISCRETE SAMPLES (Ref No: 13793/5-AA)

(REI NO: 13/93/3-AA)											
								NATIONAL E	VIRONMENT PROTECTION	ON AMENDMENT MEASUR	E (2013)
								Investigation	0	Generic Ecological	Ecological Screening
			F	PAH (n	ng/kg)			(HIL) A ^a -	(HSL) A - Low density	Investigation Level (EIL) -	Level (ESL) - Urban
							Reside	ential A	residential	Urban residential	residential
Sample		Soil type	BaP TEQ	TOTAL PAHS	NAPHTHALENE	BENZO(a)PYRENE (BaP)	BaP TEQ	TOTAL PAHS	NAPHTHALENE	NAPHTHALENE	BENZO(a)PYRENE (BaP)
TP1	0-0.15	Clay	-03	<0.8	-01	-01	3	300	5	170	0.7
TP6	0-0.15	Clay		<0.8				300	5	170	0.7
TP10	0-0.15	Clay		<0.8			-	300	5	170	0.7
TP15	0-0.1	Clay		<0.8				300	5	170	0.7
TP23	0-0.15	Clay		<0.8				300	5	170	0.7
TP33	0-0.15	Clay		<0.8				300	5	170	0.7
TP39	0-0.1	Clay		<0.8				300	5	170	0.7
TP49	0-0.15	Clay		<0.8				300	5	170	0.7
TP52	0.4-0.5	,		<0.8				300	5	170	0.7
TP50	0-0.1	Clay		<0.8				300	5	170	0.7
TP59	0-0.15	Clay		<0.8				300	5	170	0.7
TP68	0-0.15	Clay	<0.3		<0.1		3	300	5	170	0.7
TP76	0-0.15	Clay	<0.3	<0.8	<0.1	<0.1	3	300	5	170	0.7
TP80	0-0.15		<0.3	<0.8	<0.1	<0.1	3	300	5	170	0.7
Limits of	Reportir	ng (LOR)	0.3	0.8	0.1	0.1					

Notes: a: Residential with garden / accessible soil (home grow n produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.

NL: Not Limimting

TABLE I

ORGANOCHLORINE PESTICIDES (OCP) & POLYCHLORINATED BIPHENYLS (PCB) TEST RESULTS COMPOSITED SAMPLES

(Ref No: 13793/5-AA) (mg/kg) OCP (mg/kg) ENDOSULFAN (alpha, beta & sulphate) HEXACHLOROBENZENE (HCB) CHLORDANE (alpha & gamma) **ALDRIN+DIELDRIN IETHOXYCHLOR** DDD+DDE+DDT HEPTACHLOR ENDRIN **MIREX** DDT PCB Composite Number C601 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.6 < 0.2 < 0.2 <1 C602 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.6 <0.2 <0.2 <1 C604 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.6 < 0.2 < 0.2 <1 C606 <0.1 < 0.1 < 0.15 < 0.2 < 0.1 < 0.1 < 0.5 <0.6 <0.2 < 0.2 <1 C608 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.2 <0.2 < 0.6 <1 C609 <0.1<0.1<0.15<0.2<0.1<0.1<0.5 <0.6 <0.2 <0.2 C610 <0.1<0.1<0.15<0.2<0.1<0.1<0.5 <0.6 <0.2 <0.2 C611 <0.1 < 0.1 < 0.15 < 0.2 < 0.1 < 0.1 < 0.5 <0.6 <0.2 <0.2 C612 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.6 <0.2 < 0.2 <1 C613 <0.1<0.1<0.15<0.2<0.1<0.1<0.5 <0.2 <0.2 <0.6 <1 C614 <0.1<0.1<0.15<0.2<0.1<0.1<0.5 <0.6 <0.2 <0.2 <1 C616 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.2 <0.6 <0.2 <1 C617 <0.1 < 0.1 < 0.15 < 0.2 < 0.1 < 0.1 < 0.5 <0.6 <0.2 <0.2 <1 C618 <0.1<0.1<0.15<0.2<0.1<0.1<0.5 <0.6 <0.2 <02 <1 C619 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.2 <0.2 <0.6 <1 C620 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.6 <0.2 < 0.2 <1 C621 <0.1<0.1<0.15<0.2<0.1<0.1<0.5 <0.6 <0.2 <0.2 C622 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.2 <0.2 < 0.6 <1 C623 <0.1 < 0.1 < 0.15 < 0.2 < 0.1 < 0.1 < 0.5 <0.6 <0.2 <0.2 <1 C625 <0.1 < 0.1 < 0.15 < 0.2 < 0.1 < 0.1 < 0.5 <0.6 <0.2 <0.2 <1 C626 <0.1 < 0.1 < 0.15 < 0.2 < 0.1 < 0.1 < 0.5 <0.6 <0.2 <0.2 <1 C627 <0.1 <0.1 <0.15 <0.2 <0.1 <0.1 <0.5 <0.6 <0.2 < 0.2 -Limits of Reporting (LOR) 0.2 1 0.1 0.1 0.15 0.2 0.1 0.1 0.5 0.6 0.2 NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013) Health-based Investigation Levels (HIL) A^a- Residential A 10 6 6 10 300 10 270 240 50 1 Adjusted HIL^b 3 2 2 3 100 3 90 80 17 0.3 180 Ecological Investigation Level (EIL) - Urban residential Adjusted ElL^b 60

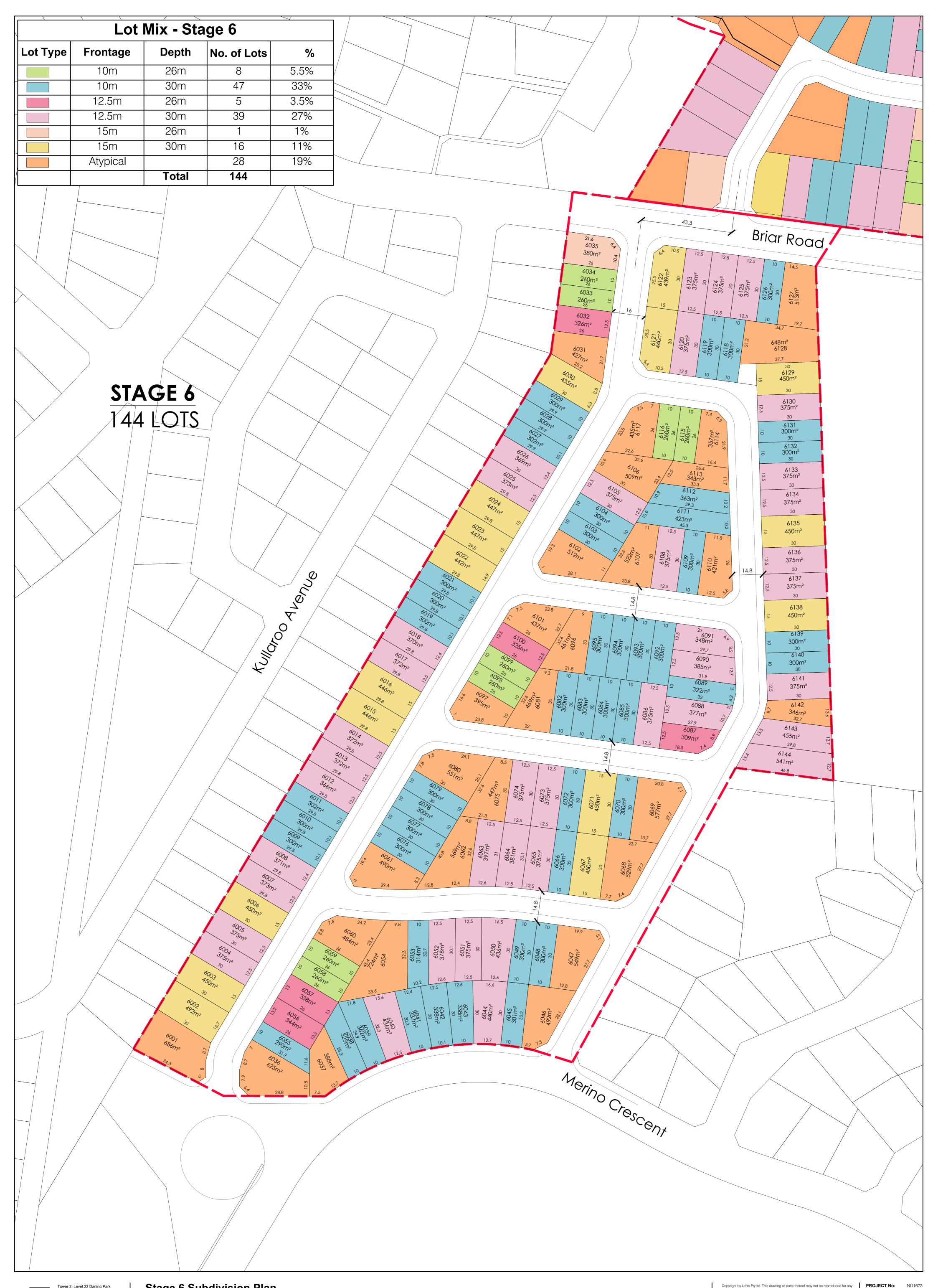
Notes: a: Residential with garden / accessible soil (home grow n produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.

b: Adjusted HIL=HIL/3;Adjusted EIL=EIL/3

c: Generic EIL for DDT

TABLE J ASBESTOS TEST RESULTS DISCRETE SAMPLES (Ref No: 13793/5-AA)

Sample Location	on Depth (m)	ASBESTOS
	,	
Soil Sa	•	
TP1	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP2	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP3	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP3	0.5-0.65	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP6	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP7	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP8	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP10	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP10	0.5-0.65	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP11	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP12	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP12	0.5-0.65	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w $= 4.5\%$
TP15	0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w $A = A = A = A = A = A = A = A = A = A $
TP17	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w $A = A = A = A = A = A = A = A = A = A $
TP22	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP23	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP23	0.3-0.4	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w $A = A = A = A = A = A = A = A = A = A $
TP24	0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w Also ACM (\sim 7mm) found at the limit of reporting 0.04% w/w; no AF/FA (\sim 7mm) found at the limit of reporting 0.001% w/w
TP27	0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w Also ACM (\sim 7mm) found at the limit of reporting 0.04% w/w; no AF/FA (\sim 7mm) found at the limit of reporting 0.001% w/w
TP33	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w Ale ACM (\sim 7mm) found at the limit of reporting 0.001% w/w; no AF/FA (\sim 7mm) found at the limit of reporting 0.001% w/w
TP39	0-0.1 0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w A = A CM (-7mm) found at the limit of reporting 0.001% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP44		No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w Ale ACM (\sim 7mm) found at the limit of reporting 0.001% w/w; no AF/FA (\sim 7mm) found at the limit of reporting 0.001% w/w
TP46	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w Ale ACM (\sim 7mm) found at the limit of reporting 0.001% w/w; no AF/FA (\sim 7mm) found at the limit of reporting 0.001% w/w
TP49	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w Ale ACM (\sim 7mm) found at the limit of reporting 0.001% w/w; no AF/FA (\sim 7mm) found at the limit of reporting 0.001% w/w
TP52	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w $A = A CM (\sqrt{7mm})$ found at the limit of reporting 0.001% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP52	0.4-0.5	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP50 TP53	0-0.1 0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP54	0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP56	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP57	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP59	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP60	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP61	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP62	0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP68	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP69	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP70	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP72	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP73	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP76	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP77	0-0.1	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP78	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP80	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP80	0.5-0.7	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP84	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP84	0.5-0.8	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP84	1.0-1.3	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP84	1.5-1.8	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w
TP85	0-0.15	No ACM (>7mm) found at the limit of reporting 0.01% w/w; no AF/FA (<7mm) found at the limit of reporting 0.001% w/w


Notes: ACM: Asbestos Containing Material

AF: Asbestos Fine

FA: Fibrous Asbestos

APPENDIX A

PROPOSED STAGE 6 SUBDIVISION PLAN (DRAWING NO SUB06-1 REV. D DATED 24 FEBRUARY 2017 PREPARED BY URBIS)

URBISTower 2, Level 23 Darling Park201 Sussex Street, Sydney, NSW 2000+61 2 8233 9900www.urbis.com.auUrbis Pty LtdABN 50 105 256 228

Stage 6 Subdivision Plan Airds Bradbury Block Typology & Feasibility Study Airds, NSW

Scale 1:750 @ A1

Copyright by Urbis Pty Itd. This drawing or parts thereof may not be reproduced for any purpose without the consent of Urbis Pty Ltd.	PROJECT No:
	DRAWING No:
This plan is conceptual and is for discussion purposes only. Subject to further detail study, Council approval, engineering input, and survey. Cadastral boundaries, areas and	REV:

dimensions are approximate only. Figured dimensions shall take preference to scaled dimensions. No relevance should be placed on this plan for any financial dealings of the land.
 REV:
 D

 DATE:
 24.02.17

SUB06-1

APPENDIX B

DEPARTMENT OF DEFENCE RECORDS

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **11** DP/SP **1176190**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact <u>UXO@defence.gov.au</u> via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **1** DP/SP **1191996**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact UXO@defence.gov.au via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **2** DP/SP **1191996**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact <u>UXO@defence.gov.au</u> via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **381** DP/SP **1056580**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact <u>UXO@defence.gov.au</u> via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **382** DP/SP **1056580**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact <u>UXO@defence.gov.au</u> via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **383** DP/SP **1056580**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact <u>UXO@defence.gov.au</u> via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **37** DP/SP **261258**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact <u>UXO@defence.gov.au</u> via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **39** DP/SP **261258**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact UXO@defence.gov.au via email.

Back

UXO can be found in most states within Australia. The following links will take you to an interactive map that will allow you to search the locations of known areas of concern.

<u>SELECT STATE</u> > <u>FIND A MAP</u> > <u>SELECT PARCEL</u>

No Results Found

No parcel found for Lot **40** DP/SP **261258**. Only parcels within 500m of a known UXO area are available. Defence is actively engaged in identifying areas where UXO are likely to be present. Members of the public can assist in this process. If you have any information that may be of assistance please contact UXO@defence.gov.au via email.

Back

APPENDIX C

NSW EPA RECORD OF NOTICES & POEO PUBLIC REGISTER

 Home Contaminated land Record of notices
 Connect
 We

 Contaminated land - record of notices
 We

 Put

 Record under section 58 of the Contaminated Land
 Ve

 This record is maintained by OEH in accordance with Part 5 of the Contaminated Land
 Ve

 Management Act 1997 (CLM Act).
 The record does not provide a record of all contaminated land

- a record of written notices issue by OEH under the CLM Act, including preliminary investigation orders.
- the names of the sites, owners or occupiers at the time of OEH action in relation to the site copies of site audit statements

(SAS) provided to OEH under section 52 of the CLM Act and relating to significantly contaminated land.

- a record of all contaminated land in NSW. <u>See frequently asked</u> <u>questions</u>
- X a list of notifications of
- contamination that OEH receives.
- the names of the sites, owners or occupiers if it changes after OEH action in relation to the site.
 some personal information.

more about the CLM record of notices

From 1 July 2009 there were changes to the terminology of certain OEH actions under the CLM Act. See the list of these changes.

The record includes notices issued under sections 35 and 36 of the Environmentally Hazardous Chemicals Act 1985. These sections have been repealed. These notices are treated by the CLM Act as management orders.

Before using the record of notices see the Disclaimer and terms of use.

As at Tuesday, 7 March 2017 there are 1349 notices in the record relating to 349 sites.

Show me the entire record or Search the record

7 March 2017

Home Contaminated land Record of notices

Search results

Your search for:LGA: Campbelltown City Council

			Search Again Refine Search
Suburb	Address	Site Name	Notices related to this site
CAMPBELLTOWN	62 Blaxland ROAD	Chemical Storage	3 former

Page 1 of 1

7 March 2017

Matched 3 notices relating

Connect

Feedback

Contact

Government

Web support Public consultation

Contact us Offices Report pollution NSW Government jobs.nsw

Home > Environment protection licences > POEO Public Register > Search for licences, applications and notices

Search results

Your search for: General Search with the following criteria

Suburb - AIRDS

returned 0 result

Search Again

Connect

Feedback

Web support

Contact

Government

Contact us Public consultation Offices Report pollution

NSW Government jobs.nsw

APPENDIX D

TABLE 1 - TEST PIT LOGS

Stage 6 Airds Bradbury Renewal Project

Job No

13793/5

13793/5-AA2

Briar Road, Airds Location

Logged & Sampled by

Refer to Drawing No

SS/JH

TABLE	1 –	Test	Pit	Log
-------	-----	------	-----	-----

TABLE 1 – Test Pit Log Page 1												
Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*						
TP1	0-0.25	0-0.15	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with root fibres	Glass pieces and plastics observed in fill						
	0.25-0.5	0.3-0.4			(CL-CI) Silty CLAY, low to medium plasticity, brown							
	0.5-0.7	NS			(CH) Silty CLAY, high plasticity, red mottled grey							
TP2	0-0.25	0-0.15	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with root fibres and gravel							
	0.25-0.6	0.3-0.4			(CH) Silty CLAY, high plasticity, red mottled grey							
TP3	0-0.7	0-0.15 0.5-0.65	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with gravel							
	0.7				Test pit No 3 terminated at 0.7m due to possible services							
TP4	0-0.2	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres							
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown							
TP5	0-0.35	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres							
	0.35-0.6	NS			(CH) Silty CLAY, high plasticity, yellow- brown mottled red							
TP6	0-0.35	0-0.15	20/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	Metal pipe observed in fill						
	0.35-0.70	0.4-0.5			(CH) Silty CLAY, high plasticity, red- brown							
TP7	0-0.2	0-0.15	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with root fibres and gravel	Plastic observed in fill						
	0.2-0.7	0.25-0.35			(CI-CH) Silty CLAY, medium to high plasticity, brown							
	0.7-1.2				(CH) Silty CLAY, high plasticity, red mottled grey							

Location

Stage 6 Airds Bradbury Renewal Project

Briar Road, Airds

Job No

13793/5

Refer to Drawing No 13793/5-AA2

Logged & Sampled by

SS/JH

Page 2 of 11

TABLE 1 – Test Pit Log

Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
TP8	0-0.3	0-0.15	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with root fibres and gravel	Glass observed in fill
	0.3-0.8	0.35-0.45			(CL-CI) Silty CLAY, low to medium plasticity, brown	
TP9	0-0.4	0-0.15	20/03/2017		(CL-CI) Silty CLAY, low to medium plasticity, brown, with root fibres	
TP10	0-0.9	0-0.15 0.5-0.65	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with gravel	Glass pieces and cloth observed in fill
	0.9-1.2	0.95-1.05			(CH) Silty CLAY, high plasticity, yellow- brown mottled red	
TP11	0-0.5	0-0.15	20/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.5-1.0	0.55-0.65			(CH) Silty CLAY, high plasticity, red mottled grey	
TP12	0-0.7	0-0.15 0.5-0.65	20/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with sandstone gravel and plastics	
	0.7-1.0	0.75-0.85			(CH) Silty CLAY, high plasticity, red- brown	
TP13	0-0.4	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.4-0.7	NS			(CH) Silty CLAY, high plasticity, yellow- brown mottled red	
TP14					Not completed due to access limitation	
TP15	0-0.1	0-0.1	21/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with gravel	
	0.1				Test pit No 15 terminated at 0.1m due to possible services	
TP16	0-0.2	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CI-CH) Silty CLAY, medium to high plasticity, brown	
	0.5-0.6	NS			(CH) Silty CLAY, high plasticity, red- brown	

Location

Stage 6 Airds Bradbury Renewal Project

Briar Road, Airds

Job No

13793/5

Refer to Drawing No 13793/5-AA2

Logged & Sampled by

SS/JH

TABLE	1 –	Test	Pit	Log
-------	-----	------	-----	-----

TABLE 1 – Test Pit Log Page 3 of								
Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*		
TP17	0-0.5	0-0.15	20/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel and root fibres			
	0.5-0.8	0.55-0.65			(CH) Silty CLAY, high plasticity, red- brown			
TP18	0-0.2	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.2-0.5	NS			(CL-CI) Silty CLAY, low to medium plasticity, brown			
TP19	0-0.25	0-0.15	20/03/2017		(CL-CI) Silty CLAY, low to medium plasticity, brown, with root fibres			
	0.25-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown			
TP20	0-0.2	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.2-0.4	NS			(CL-CI) Silty CLAY, low to medium plasticity, brown			
TP21	0-0.5	0-0.15	20/03/2017		(CH) Silty CLAY, high plasticity, red- brown			
TP22	0-0.4	0-0.15	20/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with road base gravel			
	0.4-0.8	0.45-0.55			(CH) Silty CLAY, high plasticity, red- brown			
TP23	0-0.3	0-0.15	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel and root fibres	Plastic mesh bag observed in fill		
	0.3-0.4	0.3-0.4			FILL: Sandy Clay, low plasticity, pale brown, with gravel and sandstone gravel			
	0.4				Test pit No 23 terminated at 0.4m due to possible services			
TP24	0-0.1	0-0.1	21/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with gravel			
	0.1				Test pit No 24 terminated at 0.1m due to possible services			
TP25					Not completed due to access limitation			

Stage 6 Airds Bradbury Renewal Project

Job No

13793/5

SS/JH

13793/5-AA2

Briar Road, Airds Location

Logged & Sampled by

Refer to Drawing No

TABLE	1 – 1	Test	Pit	Log
-------	-------	------	-----	-----

	TABLE 1 – Test Pit Log Page 4 of 1							
Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*		
TP26					Not completed due to access limitation			
TP27	0-0.1	0-0.1	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel			
	0.1				Test pit No 27 terminated at 0.1m due to possible services			
TP28	0-0.2	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.2-0.4	NS			(CH) Silty CLAY, high plasticity, red- brown			
TP29	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey			
TP30	0-0.3	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey			
TP31	0-0.3	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey			
TP32	0-0.4	0-0.15	20/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.4-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey			
TP33	0-0.15	0-0.15	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel			
	0.15-0.4	0.2-0.3			(CL-CI) Silty CLAY, low to medium plasticity, brown			
	0.4-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown			
TP34	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres			
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey			

Location

Stage 6 Airds Bradbury Renewal Project

Briar Road, Airds

Job No

13793/5

13793/5-AA2 **Refer to Drawing No**

Logged & Sampled by

SS/JH

Page 5 of 11

TABLE 1 – Test Pit Log

Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
TP35	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	
TP36	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	
TP37	0-0.25	0-0.15	21/03//2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.25-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	
TP38	0-0.2	0-0.15	21/03/2017		(CL-CI) Silty CLAY, low to medium plasticity, brown	
	0.2-0.4	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP39	0-0.1	0-0.1	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.1				Test pit No 39 terminated at 0.1m due to possible services	
TP40					Not completed due to access limitation	
TP41	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP42	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	
TP43	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	

Stage 6 Airds Bradbury Renewal Project

Job No

13793/5

13793/5-AA2

Briar Road, Airds Location

Logged & Sampled by

Refer to Drawing No

SS/JH

TABLE	1 – 1	ſest	Pit	Log
-------	-------	------	-----	-----

Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Page 6 of 1 Remarks*
TP44	0-0.2	0-0.15	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel and root fibres	
	0.2-0.4	0.25-0.35			(CL-CI) Silty CLAY, low to medium plasticity, brown	
	0.4-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	
TP45	0-0.25	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.25-0.5	NS			(CH) Silty CLAY, high plasticity, red mottled grey	
TP46	0-0.3	0-0.15	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.3-0.5	0.25-0.35			(CL-CI) Silty CLAY, low to medium plasticity, brown	
TP47	0-0.3	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.3-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP48	0-0.2	0-0.15	21/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP49	0-0.2	0-0.15	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.2-0.5	0.25-0.35			(CL-CI) Silty CLAY, low to medium plasticity, brown	
TP50	0-0.1	0-0.1	23/03/2017		FILL: Silty Clay, low to medium	
	0.1				plasticity, brown, with gravel Test pit No 50 terminated at 0.1m due to possible services	
TP51					Not completed due to access limitation	

Stage 6 Airds Bradbury Renewal Project

Job No

Refer to Drawing No

13793/5

13793/5-AA2

Briar Road, Airds Location

Logged & Sampled by

SS/JH

TABLE	1 – Tes	t Pit Log
-------	---------	-----------

	TABLE 1 – Test Pit Log Page 7 of 2								
Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*			
TP52	0-0.4	0-0.15	21/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel and root fibres				
	0.4-0.5	0.4-0.5			FILL: Sandy Clay, low plasticity, pale brown, with gravel, with sandstone gravel				
TP53	0-0.1	0-0.1	23/03/2017		FILL: Silty Clay, low to medium plasticity, brown				
	0.1				Test pit No 53 terminated at 0.1m due to potential services				
TP54	0-0.1	0-0.1	23/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with sand				
	0.1				Test pit No 54 terminated at 0.1m due to potential services				
TP55	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres				
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown				
TP56	0-0.5	0-0.15	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel				
	0.5				Test pit No 56 terminated at 0.5m due to possible services				
TP57	0-0.3	0-0.15	22/03/2017		FILL: Silty Clay, low to medium plasticity, brown				
	0.3-0.8	0.35-0.45			(CH) Silty CLAY, high plasticity, red- brown				
TP58	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres				
	0.2-0.7	NS			(CH) Silty CLAY, high plasticity, red- brown				
TP59	0-0.5	0-0.15	23/03/2017		FILL: Silty Clay, low to medium plasticity, brown				
	0.5-1.0	0.55-0.65			(CI-CH) Silty CLAY, medium to high plasticity, brown				
	l								

Stage 6 Airds Bradbury Renewal Project

Job No

13793/5

SS/JH

13793/5-AA2

Briar Road, Airds Location

Logged & Sampled by

Refer to Drawing No

TABLE	1 –	Test	Pit	Log
-------	-----	------	-----	-----

Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Page 8 of 1 Remarks*
TP60	0-0.5	0-0.15	23/03/2017		FILL: Silty Clay, low to medium plasticity, brown	
	0.5-1.0	0.55-0.65			(CI-CH) Silty CLAY, medium to high plasticity, brown	
TP61	0-0.2	0-0.15	23/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.2-0.5	0.25-0.35			(CI-CH) Silty CLAY, medium to high plasticity, brown	
TP62	0-0.1	0-0.1	23/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.1				Test pit No 62 terminated at 0.1m due to possible services	
TP63	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP64	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP65	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP66	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP67	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	

Location

Stage 6 Airds Bradbury Renewal Project

Briar Road, Airds

Job No

13793/5

Refer to Drawing No 13793/5-AA2

Logged & Sampled by

SS/JH

TABLE	1 – Test Pit Lo	g
-------	-----------------	---

-	Depth	Sample	Data			Page 9 of 1
Test pit	(m)	Depth (m)	Date	Time	Material Description	Remarks*
TP68	0-0.3	0-0.15	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.3-0.8	0.35-0.45			(CH) Silty CLAY, high plasticity, red- brown	
TP69	0-0.5	0-0.15	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown	
	0.5-1.0	0.55-0.65			(CH) Silty CLAY, high plasticity, red mottled grey	
TP70	0-0.4	0-0.15	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.4-0.9	0.45-0.55			(CI-CH) Silty CLAY, medium to high plasticity, brown	
TP71	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP72	0-0.5	0-0.15	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.5-1.0	0.55-0.65			(CH) Silty CLAY, high plasticity, red mottled grey	
TP73	0-0.4	0-0.15	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.4-0.9	0.45-0.55			(CI-CH) Silty CLAY, medium to high plasticity, brown	
TP74	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	
TP75	0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CH) Silty CLAY, high plasticity, red- brown	

Stage 6 Airds Bradbury Renewal Project

Job No

13793/5

Briar Road, Airds Location

Logged & Sampled by

Refer to Drawing No

SS/JH

13793/5-AA2

TABLE	1 – 1	ſest	Pit	Log
-------	-------	------	-----	-----

Depth	Sample				
(m)	Depth (m)	Date	Time	Material Description	Remarks*
0-0.1	0-0.1	23/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with sand	
0.1				Test pit No 76 terminated at 0.1m due to potential services	
0-0.1	0-0.1	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
0.1				Test pit No 77 terminated at 0.1m due to potential services	
0-0.3	0-0.15	22/03/2017		FILL: Silty Clay, low to medium plasticity, brown, with gravel	
0.3-0.8	0.35-0.45			(CI-CH) Silty CLAY, medium to high plasticity, brown	
0-0.2	0-0.15	23/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
0.2-0.5	NS			(CI-CH) Silty CLAY, medium to high plasticity, brown	
0-0.7	0-0.15	23/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.5-0.7				
0.7-1.2	0.75-0.85			(CH) Silty CLAY, high plasticity, red- brown	
0-0.2	0-0.15	23/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
0.2-0.5	NS			(CI-CH) Silty CLAY, medium to high plasticity, brown	
0-0.2	0-0.15	23/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
0.2-0.5	NS			(CI-CH) Silty CLAY, medium to high plasticity, brown	
0-0.2	0-0.15	22/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
0.2-0.5	NS			(CI-CH) Silty CLAY, medium to high plasticity, brown	
	0.1 0-0.1 0.1 0-0.3 0.3-0.8 0-0.2 0.2-0.5 0-0.7 0.7-1.2 0-0.2 0.2-0.5 0-0.2 0.2-0.5	0.10-0.10-0.10-0.10.100-0.30-0.150.3-0.80.35-0.450-0.20-0.150.2-0.5NS0.7-1.20.5-0.70.7-1.20.5-0.70.7-1.20.5-0.70.7-0.20-0.150.2-0.5NS0.2-0.5NS0.2-0.5NS0.2-0.5NS0.2-0.5NS0.2-0.5NS0.2-0.5NS	0.1 0.0.1 22/03/2017 0.0.1 22/03/2017 0.0.1 22/03/2017 0.0.3 0.0.15 22/03/2017 0.0.3 0.035.0.45 23/03/2017 0.0.2 0.0.15 23/03/2017 0.0.7 0.5-0.7 23/03/2017 0.0.7 0.75-0.85 23/03/2017 0.0.2 0.0.15 23/03/2017 0.2-0.5 NS 23/03/2017	0.122/03/20170-0.10-0.122/03/20170.122/03/201723/03/20170.0.123/03/201723/03/20170.0.10.5-0.723/03/20170.7-1.20.75-0.8523/03/20170.0.20-0.1523/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/20170.2-0.5NS23/03/2017	0.1plasticity, brown, with sand0.10-0.122/03/2017FILL: Silty Clay, medium to high plasticity, brown, with gravel0.10-0.122/03/2017FILL: Silty Clay, medium to high plasticity, brown, with gravel0.10-0.1522/03/2017FILL: Silty Clay, low to medium plasticity, brown, with gravel0-0.30-0.1522/03/2017FILL: Silty Clay, low to medium plasticity, brown, with gravel0.3-0.80.35-0.45(CI-CH) Silty Clay, low to medium plasticity, brown0-0.20-0.1523/03/2017TOPSOIL: Silty Clay, low to medium plasticity, brown0-0.70-0.1523/03/2017TOPSOIL: Silty Clay, medium to high plasticity, brown0-0.70-0.1523/03/2017FILL: Silty Clay, medium to high plasticity, brown0-0.20-0.1523/03/2017TOPSOIL: Silty Clay, medium to high plasticity, brown0-0.20-0.1523/03/2017TOPSOIL: Silty Clay, low to medium plasticity, brown, with gravel0-0.20-0.1523/03/2017TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres0.2-0.5NS(CI-CH) Silty CLAY, medium to high plasticity, brown0-0.20-0.1523/03/2017TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres0.2-0.5NS(CI-CH) Silty CLAY, medium to high plasticity, brown, with root fibres0.2-0.5NS(CI-CH) Silty CLAY, medium to high plasticity, brown, with root fibres0.2-0.5NS(CI-CH) Silty CLAY, medium to high plasticity, brown, with root fibres

Location

Stage 6 Airds Bradbury Renewal Project

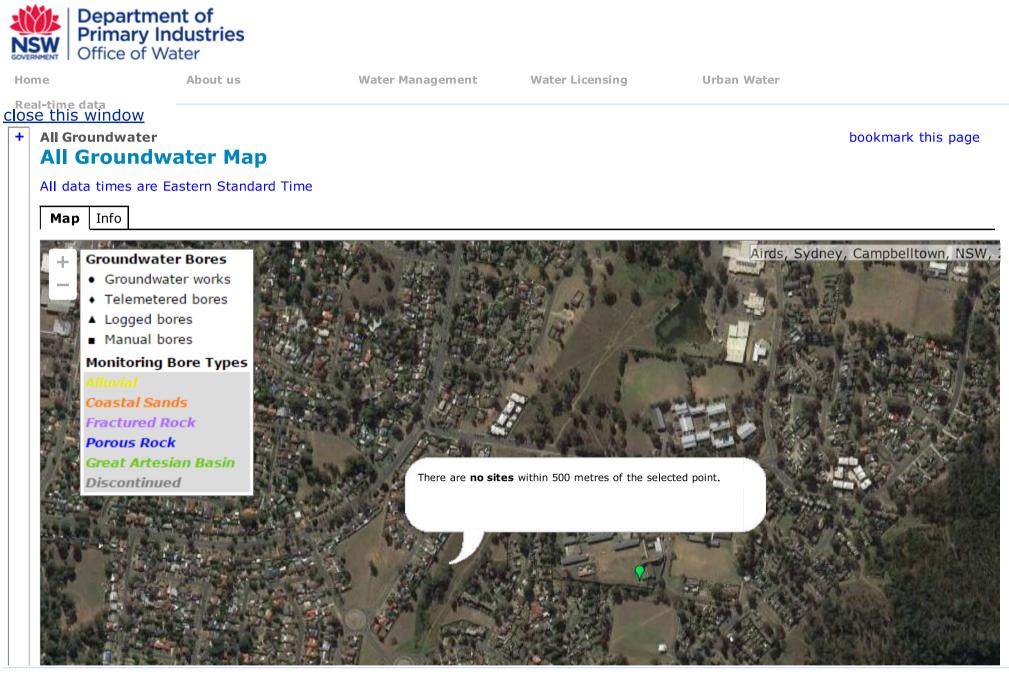
Briar Road, Airds

Job No

13793/5

13793/5-AA2 **Refer to Drawing No**

Logged & Sampled by


SS/JH

Page 11 of 11

Test pit	Depth (m)	Sample Depth (m)	Date	Time	Material Description	Remarks*
TP84	0-2.0	0-0.15 0.5-0.8 1.0-1.3 1.5-1.8	22/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	2.0-2.5	2.05-2.15			(CH) Silty CLAY, high plasticity, red- brown	
TP85	0-0.3	0-0.15	23/03/2017		FILL: Silty Clay, medium to high plasticity, brown, with gravel	
	0.3-0.8	0.35-0.45			(CH) Silty CLAY, high plasticity, red- brown	
TP86	0-0.2	0-0.15	23/03/2017		TOPSOIL: Silty Clay, low to medium plasticity, brown, with root fibres	
	0.2-0.5	NS			(CI-CH) Silty CLAY, medium to high plasticity, brown	

APPENDIX E

NSW OFFICE OF WATER GROUNDWATER BORE MAP

APPENDIX F

PID CALIBRATION SHEETS

PID MODEL) rban Growt Stage & Brier Rd, A: PID MODEL SERIAL NO:	: PGM - 760		JC DA Cł 000 CA	DB NO 13,793/5 ATE 20/3/17 HECKED BY JH ALIBRATED BY JH			
This perform	This performance of this PID has been checked and calibrated as follows:							
	Charged*			~ <u>2</u>	T_f			
	Calibrate	0.0ppm		F	Reading: 0.0_ppm			
	,	100ppm Iso	obutylene	F	Reading: 100.0_ppm			
G	as Bottle Numl	ber 173	Lot No	51809				
-								
	broved			Date	a: 20/3/17			

PROJECT ADDRESS PID MODE	Stage 6 Brior Rd A BL PID MODE D SERIAL NO	tirds. L: PGM-	7600 MINIRAE 05380	2000	JOB NO 13 793/5 DATE 21/3/17 CHECKED BY JU CALIBRATED BY JU		
This perform	This performance of this PID has been checked and calibrated as follows:						
	Charged*						
	Calibrate	0.0ppm			Reading:ppm		
		100ppm	Isobutylene		Reading: (00.0_ppm		
Ĩ	Gas Bottle Nur	nber 173	Lot No	51809)		
	×						
	oproved C	\leftarrow		ſ	Date: 21/3/17		
Note: * Shou	uld be between 5	. v and 6.2V					

CLIENT PROJECT ADDRESS PID MODE SERIAL NO		, Airds L: PGM -	7600 MINIRAE 005380	2000	JOB NO 13793/5 DATE 22/3/17 CHECKED BY JH CALIBRATED BY JH
This perforr	mance of this Pl	D has been	checked and ca	librated	as follows:
	Charged*				
	Calibrate	0.0ppm			Reading: <u>0-0</u> _ppm
		100ppm	Isobutylene		Reading: <u>/ f0. 0</u> ppm
	Gas Bottle Nur	nber 173	Lot No	51809)
Signed & Ap	oproved	200		[Date: 2 Z/03/17

CLIENT U PROJECT ADDRESS PID MODEL SERIAL NO	sbor Growth Stage 6 Briar Rd, (PID MODE SERIAL NO	finds L: PGM-	7600 MINIRAE 005380	2000	JOB NO 13793/S DATE 23/3/17 CHECKED BY JH CALIBRATED BY JIT				
This perform	This performance of this PID has been checked and calibrated as follows:								
	Charged*								
	Calibrate	0.0ppm			Reading: <u>0.0</u> ppm				
		100ppm	lsobutylene		Reading: <u>100.0</u> _ppm				
G	as Bottle Nur	nber 173	Lot No	51809)				
Signed & App Note: * Shoul		V and 6 2V		[Date: 23/3/17				

APPENDIX G

LABORATORY TEST CERTIFICATES

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds	SGS Reference	SE163472 R0
Order Number	(Not specified)	Date Received	21/3/2017
Samples	79	Date Reported	31/3/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique as per AS 4964-2004.

Asbestos analysed by Approved Identifiers Ravee Sivasubramaniam and Yusuf Kuthpudin .

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

km/n/

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

ion

Shane McDermott Senior Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 22

SE163472 R0

VOC's in Soil [AN433] Tested: 27/3/2017

			TP1 0-0.15	TP6 0-0.15	TP10 0-0.15	TP15 0-0.1	TP23 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/3/2017	20/3/2017	20/3/2017	20/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.007	SE163472.011	SE163472.017	SE163472.025
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP33 0-0.15	TP39 0-0.1	TP49 0-0.15	TP52 0.4-0.5	X1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- 5012	-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.034	SE163472.040	SE163472.049	SE163472.051	SE163472.052
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			Tripspike TS1	Tripspike TS2
			SOIL	SOIL
PARAMETER	UOM	LOR	- 20/3/2017 SE163472.059	- 20/3/2017 SE163472.060
Benzene	mg/kg	0.1	[87%]	[81%]
Toluene	mg/kg	0.1	[91%]	[84%]
Ethylbenzene	mg/kg	0.1	[90%]	[87%]
m/p-xylene	mg/kg	0.2	[96%]	[86%]
o-xylene	mg/kg	0.1	[89%]	[87%]
Total Xylenes*	mg/kg	0.3	-	-
Total BTEX	mg/kg	0.6	-	-
Naphthalene	mg/kg	0.1	-	-

SE163472 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 27/3/2017

			TP1 0-0.15	TP6 0-0.15	TP10 0-0.15	TP15 0-0.1	TP23 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/3/2017	- 20/3/2017	- 20/3/2017	- 20/3/2017	- 21/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.007	SE163472.011	SE163472.017	SE163472.025
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP33 0-0.15	TP39 0-0.1	TP49 0-0.15	TP52 0.4-0.5	X1
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.034	SE163472.040	SE163472.049	SE163472.051	SE163472.052
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

SE163472 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN40

03] Tested: 28/3/2017	
-----------------------	--

			TP1 0-0.15	TP6 0-0.15	TP10 0-0.15	TP15 0-0.1	TP23 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/3/2017	20/3/2017	20/3/2017	20/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.007	SE163472.011	SE163472.017	SE163472.025
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			TP33 0-0.15	TP39 0-0.1	TP49 0-0.15	TP52 0.4-0.5	X1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.034	SE163472.040	SE163472.049	SE163472.051	SE163472.052
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	720	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	2700	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	1500	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	2000	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	2900	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	3400	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	4900	<210	<210	<210

SE163472 R0

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 28/3/2017

			TP1 0-0.15	TP6 0-0.15	TP10 0-0.15	TP15 0-0.1	TP23 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL -
PARAMETER	UOM	LOR	20/3/2017 SE163472.001	20/3/2017 SE163472.007	20/3/2017 SE163472.011	20/3/2017 SE163472.017	21/3/2017 SE163472.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			TP33 0-0.15	TP39 0-0.1	TP49 0-0.15	TP52 0.4-0.5	X1
			SOIL	SOIL	SOIL	SOIL	SOIL
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.034	SE163472.040	SE163472.049	SE163472.051	SE163472.052
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

SE163472 R0

OC Pesticides in Soil [AN420] Tested: 28/3/2017

			C601	C602	C604	C606	C608
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/3/2017			21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.061	SE163472.062	SE163472.064	SE163472.066	SE163472.068
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1					
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
L							

SE163472 R0

OC Pesticides in Soil [AN420] Tested: 28/3/2017 (continued)

			C609	C610	C611	C612	C613
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER Hexachlorobenzene (HCB)	UOM	LOR 0.1	SE163472.069	SE163472.070	SE163472.071 <0.1	SE163472.072 <0.1	SE163472.073 <0.1
Alpha BHC	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg						
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

OC Pesticides in Soil [AN420] Tested: 28/3/2017 (continued)

			C614	C616	Duplicate CD1
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	21/3/2017 SE163472.074	21/3/2017 SE163472.076	21/3/2017 SE163472.077
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.05	<0.05	<0.05	<0.05
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1

SE163472 R0

PCBs in Soil [AN420] Tested: 28/3/2017

			C601	C602	C604	C606	C608
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.061	SE163472.062	SE163472.064	SE163472.066	SE163472.068
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			C612	C613	C614	C616	Duplicate CD1
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.072	SE163472.073	SE163472.074	SE163472.076	SE163472.077
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

SE163472 R0

pH in soil (1:5) [AN101] Tested: 27/3/2017

			TP1 0-0.15	TP4 0-0.15	TP6 0-0.15	TP9 0-0.15	TP15 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.005	SE163472.007	SE163472.010	SE163472.017
pH	pH Units	-	8.2	6.0	6.7	7.0	6.7

			TP18 0-0.15	TP19 0-0.15	TP20 0-0.15	TP21 0-0.15	TP29 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/3/2017	- 20/3/2017	- 20/3/2017	- 20/3/2017	- 21/3/2017
PARAMETER	UOM	LOR	SE163472.020	SE163472.021	SE163472.022	SE163472.023	SE163472.030
pН	pH Units	-	6.2	6.7	6.8	6.3	6.9

			TP34 0-0.15	TP39 0-0.1	TP45 0-0.15	TP49 0-0.15	TP52 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
							_
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.035	SE163472.040	SE163472.045	SE163472.049	SE163472.051
pH	pH Units	-	6.5	6.5	6.2	6.4	8.3

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 29/3/2017

			TP1 0-0.15	TP4 0-0.15	TP6 0-0.15	TP9 0-0.15	TP15 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/3/2017	- 20/3/2017	- 20/3/2017	- 20/3/2017	- 20/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.005	SE163472.007	SE163472.010	SE163472.017
Exchangeable Sodium, Na	mg/kg	2	170	94	71	320	41
Exchangeable Sodium, Na	meq/100g	0.01	0.72	0.41	0.31	1.4	0.18
Exchangeable Sodium Percentage*	%	0.1	3.3	6.8	2.5	11.0	1.4
Exchangeable Potassium, K	mg/kg	2	240	200	390	210	200
Exchangeable Potassium, K	meq/100g	0.01	0.61	0.50	0.99	0.55	0.52
Exchangeable Potassium Percentage*	%	0.1	2.8	8.4	8.0	4.3	4.2
Exchangeable Calcium, Ca	mg/kg	2	3400	460	460	1100	1700
Exchangeable Calcium, Ca	meq/100g	0.01	17	2.3	2.3	5.3	8.6
Exchangeable Calcium Percentage*	%	0.1	76.7	38.5	18.6	41.9	68.9
Exchangeable Magnesium, Mg	mg/kg	2	460	340	1100	660	390
Exchangeable Magnesium, Mg	meq/100g	0.02	3.8	2.8	8.8	5.4	3.2
Exchangeable Magnesium Percentage*	%	0.1	17.2	46.3	70.9	42.8	25.5
Cation Exchange Capacity	meq/100g	0.02	22	6.0	12	13	12

			TP18 0-0.15	TP19 0-0.15	TP20 0-0.15	TP21 0-0.15	TP29 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			20/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.020	SE163472.021	SE163472.022	SE163472.023	SE163472.030
Exchangeable Sodium, Na	mg/kg	2	43	58	45	89	29
Exchangeable Sodium, Na	meq/100g	0.01	0.19	0.25	0.20	0.39	0.13
Exchangeable Sodium Percentage*	%	0.1	2.3	1.6	1.1	4.5	1.0
Exchangeable Potassium, K	mg/kg	2	280	260	630	140	390
Exchangeable Potassium, K	meq/100g	0.01	0.70	0.67	1.6	0.36	1.0
Exchangeable Potassium Percentage*	%	0.1	8.6	4.4	8.7	4.1	7.6
Exchangeable Calcium, Ca	mg/kg	2	770	1900	2300	610	2000
Exchangeable Calcium, Ca	meq/100g	0.01	3.8	9.4	12	3.0	10
Exchangeable Calcium Percentage*	%	0.1	46.8	61.8	63.5	35.3	75.5
Exchangeable Magnesium, Mg	mg/kg	2	420	600	600	590	260
Exchangeable Magnesium, Mg	meq/100g	0.02	3.5	4.9	4.9	4.8	2.1
Exchangeable Magnesium Percentage*	%	0.1	42.3	32.2	26.7	56.1	16.0
Cation Exchange Capacity	meq/100g	0.02	8.2	15	18	8.6	13

			TP34 0-0.15	TP39 0-0.1	TP45 0-0.15	TP49 0-0.15	TP52 0.4-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.035	SE163472.040	SE163472.045	SE163472.049	SE163472.051
Exchangeable Sodium, Na	mg/kg	2	56	84	35	19	22
Exchangeable Sodium, Na	meq/100g	0.01	0.24	0.37	0.15	0.08	0.09
Exchangeable Sodium Percentage*	%	0.1	2.4	2.0	1.8	0.8	1.5
Exchangeable Potassium, K	mg/kg	2	260	310	390	360	85
Exchangeable Potassium, K	meq/100g	0.01	0.65	0.79	1.0	0.91	0.22
Exchangeable Potassium Percentage*	%	0.1	6.4	4.4	11.9	8.9	3.5
Exchangeable Calcium, Ca	mg/kg	2	1000	3000	700	630	1100
Exchangeable Calcium, Ca	meq/100g	0.01	5.0	15	3.5	3.2	5.5
Exchangeable Calcium Percentage*	%	0.1	49.7	83.3	41.7	30.8	88.6
Exchangeable Magnesium, Mg	mg/kg	2	510	230	460	740	48
Exchangeable Magnesium, Mg	meq/100g	0.02	4.2	1.8	3.7	6.1	0.40
Exchangeable Magnesium Percentage*	%	0.1	41.5	10.3	44.6	59.5	6.4
Cation Exchange Capacity	meq/100g	0.02	10	18	8.4	10	6.2

SE163472 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 28/3/2017

			C601	C602	C603	C604	C605
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	20/3/2017 SE163472.061	20/3/2017 SE163472.062	20/3/2017 SE163472.063	20/3/2017 SE163472.064	20/3/2017 SE163472.065
Arsenic, As	mg/kg	3	6	9	7	9	7
					1		1
Cadmium, Cd	mg/kg	0.3	0.3	0.4	0.3	<0.3	0.4
Chromium, Cr	mg/kg	0.3	12	12	11	7.0	11
Copper, Cu	mg/kg	0.5	31	21	14	22	21
Lead, Pb	mg/kg	1	31	27	24	18	30
Nickel, Ni	mg/kg	0.5	20	11	10	6.7	16
Zinc, Zn	mg/kg	0.5	64	52	44	56	62

			C606	C607	C608	C609	C610
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	21/3/2017 SE163472.066	21/3/2017 SE163472.067	21/3/2017 SE163472.068	21/3/2017 SE163472.069	21/3/2017 SE163472.070
Arsenic, As	mg/kg	3	7	6	7	8	7
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	0.5	<0.3
Chromium, Cr	mg/kg	0.3	9.8	10	9.9	14	10
Copper, Cu	mg/kg	0.5	28	13	17	21	18
Lead, Pb	mg/kg	1	25	20	36	39	32
Nickel, Ni	mg/kg	0.5	9.7	8.9	12	15	9.7
Zinc, Zn	mg/kg	0.5	76	37	64	120	49

			C611	C612	C613	C614	C615
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.071	SE163472.072	SE163472.073	SE163472.074	SE163472.075
Arsenic, As	mg/kg	3	6	6	7	6	7
Cadmium, Cd	mg/kg	0.3	<0.3	0.3	<0.3	<0.3	0.3
Chromium, Cr	mg/kg	0.3	9.6	9.3	8.1	9.5	12
Copper, Cu	mg/kg	0.5	20	26	22	14	17
Lead, Pb	mg/kg	1	22	25	25	33	27
Nickel, Ni	mg/kg	0.5	18	12	14	11	13
Zinc, Zn	mg/kg	0.5	53	78	91	63	58

			C616	Duplicate CD1	Duplicate CD2
			SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.076	SE163472.077	SE163472.078
Arsenic, As	mg/kg	3	4	7	5
Cadmium, Cd	mg/kg	0.3	<0.3	0.3	<0.3
Chromium, Cr	mg/kg	0.3	9.4	16	10
Copper, Cu	mg/kg	0.5	6.8	28	14
Lead, Pb	mg/kg	1	15	28	25
Nickel, Ni	mg/kg	0.5	4.5	18	9.9
Zinc, Zn	mg/kg	0.5	24	68	46

SE163472 R0

Mercury in Soil [AN312] Tested: 28/3/2017

			C601	C602	C603	C604	C605
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.061	SE163472.062	SE163472.063	SE163472.064	SE163472.065
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			C606	C607	C608	C609	C610
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 21/3/2017	- 21/3/2017	- 21/3/2017	- 21/3/2017	- 21/3/2017
PARAMETER	UOM	LOR	SE163472.066	SE163472.067	SE163472.068	SE163472.069	SE163472.070
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			C611	C612	C613	C614	C615
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.071	SE163472.072	SE163472.073	SE163472.074	SE163472.075
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			C616	Duplicate CD1	Duplicate CD2
			SOIL	SOIL	SOIL
					-
			21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.076	SE163472.077	SE163472.078
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05

SE163472 R0

Moisture Content [AN002] Tested: 27/3/2017

			TP1 0-0.15	TP4 0-0.15	TP6 0-0.15	TP9 0-0.15	TP10 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.005	SE163472.007	SE163472.010	SE163472.011
% Moisture	%w/w	0.5	24	22	22	28	15

			TP15 0-0.1	TP18 0-0.15	TP19 0-0.15	TP20 0-0.15	TP21 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/3/2017	- 20/3/2017	- 20/3/2017	- 20/3/2017	- 20/3/2017
PARAMETER	UOM	LOR	SE163472.017	SE163472.020	SE163472.021	SE163472.022	SE163472.023
% Moisture	%w/w	0.5	17	26	25	26	25

			TP23 0-0.15	TP29 0-0.15	TP33 0-0.15	TP34 0-0.15	TP39 0-0.1
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.025	SE163472.030	SE163472.034	SE163472.035	SE163472.040
% Moisture	%w/w	0.5	20	22	18	27	19

			TP45 0-0.15	TP49 0-0.15	TP52 0.4-0.5	X1	C601
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/3/2017	21/3/2017	21/3/2017	20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.045	SE163472.049	SE163472.051	SE163472.052	SE163472.061
% Moisture	%w/w	0.5	27	17	12	23	22

			C602	C603	C604	C605	C606
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/3/2017			20/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.062	SE163472.063	SE163472.064	SE163472.065	SE163472.066
% Moisture	%w/w	0.5	16	23	15	26	17

			C607	C608	C609	C610	C611
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.067	SE163472.068	SE163472.069	SE163472.070	SE163472.071
% Moisture	%w/w	0.5	17	22	25	17	20

			C612	C613	C614	C615	C616
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.072	SE163472.073	SE163472.074	SE163472.075	SE163472.076
% Moisture	%w/w	0.5	23	20	18	26	15

SE163472 R0

Moisture Content [AN002] Tested: 27/3/2017 (continued)

			Duplicate CD1	Duplicate CD2
			SOIL	SOIL
			-	-
			21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.077	SE163472.078
% Moisture	%w/w	0.5	21	22

SE163472 R0

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 29/3/2017

			TP1 0-0.15	TP2 0-0.15	TP3 0-0.15	TP3 0.5-0.65	TP6 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.001	SE163472.002	SE163472.003	SE163472.004	SE163472.007
Total Sample Weight	g	1	655	740	569	711	706
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD,ORG	NAD,ORG	NAD	NAD	NAD

			TP7 0-0.15	TP8 0-0.15	TP10 0-0.15	TP10 0.5-0.65	TP11 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017	20/3/2017	20/3/2017	20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.008	SE163472.009	SE163472.011	SE163472.012	SE163472.013
Total Sample Weight	g	1	688	753	629	790	691
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD,ORG	NAD,ORG	NAD	NAD	NAD

			TP12 0-0.15	TP12 0.5-0.65	TP15 0-0.1	TP17 0-0.15	TP22 0-0.15
			~~~				
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017	20/3/2017	20/3/2017	20/3/2017	20/3/2017
PARAMETER	UOM	LOR	SE163472.014	SE163472.015	SE163472.017	SE163472.019	SE163472.024
Total Sample Weight	g	1	714	831	802	688	550
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD	NAD	NAD,ORG	NAD	NAD

			TP23 0-0.15	TP23 0.3-0.4	TP24 0-0.1	TP27 0-0.1	TP33 0-0.15
			SOIL -	SOIL	SOIL	SOIL	SOIL -
PARAMETER	UOM	LOR	21/3/2017 SE163472.025	21/3/2017 SE163472.026	21/3/2017 SE163472.027	21/3/2017 SE163472.028	21/3/2017 SE163472.034
Total Sample Weight	g	1	777	894	601	597	824
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD	NAD	NAD	NAD	NAD



#### Gravimetric Determination of Asbestos in Soil [AN605] Tested: 29/3/2017 (continued)

			TP39 0-0.1	TP44 0-0.15	TP46 0-0.15	TP49 0-0.15	TP52 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/3/2017	21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.040	SE163472.044	SE163472.046	SE163472.049	SE163472.050
Total Sample Weight	g	1	567	728	709	669	868
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD,ORG	NAD	NAD	NAD	NAD,ORG

PARAMETER	UOM	LOR	TP52 0.4-0.5 SOIL - 21/3/2017 SE163472.051
Total Sample Weight	g	1	891
ACM in >7mm Sample*	g	0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001
Fibre Type	No unit	-	NAD



### SE163472 R0

#### Metals in Water (Dissolved) by ICPOES [AN320/AN321] Tested: 30/3/2017

			Rinsate R1	Rinsate R2	
			WATER	WATER	
			- 20/3/2017	- 21/3/2017	
PARAMETER	UOM	LOR	SE163472.058	SE163472.079	
Arsenic, As	mg/L	0.02	<0.02	<0.02	
Cadmium, Cd	mg/L	0.001	<0.001	<0.001	
Chromium, Cr	mg/L	0.005	<0.005	<0.005	
Copper, Cu	mg/L	0.005	<0.005	<0.005	
Lead, Pb	mg/L	0.02	<0.02	<0.02	
Nickel, Ni	mg/L	0.005	<0.005	<0.005	
Zinc, Zn	mg/L	0.01	0.02	<0.01	



### SE163472 R0

#### Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 28/3/2017

			Rinsate R1	Rinsate R2
			WATER	WATER
				-
			20/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472.058	SE163472.079
Mercury	mg/L	0.0001	<0.0001	<0.0001



	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below:
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).



# **METHOD SUMMARY**

AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN605	This technique gravimetrically determines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free fibres which are only observed by standard trace analysis as per AN 602.
AN605	AMO = Amosite Detected CRY = Chrysotile Detected CRO = Crocidolite Detected ORG = Organic Fibres Detected SMF = Synthetic Mineral Fibres Detected UMF = Unknown Mineral Fibres Detected NAD = No Asbestos Detected
AN605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009.



#### FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received. UOM LOR ¢↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-OU-C 20Plan pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.



# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds	SGS Reference	SE163472 R0
Order Number	(Not specified)	Date Received	21 Mar 2017
Samples	79	Date Reported	31 Mar 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item Matrix Spike Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES 1 item

SAMPLE SUMMARY Samples clearly labelled Yes Complete documentation received Yes Ice Bricks Sample container provider SGS Sample cooling method 58 Soil, 2 Water Samples received in correct containers Yes Sample counts by matrix 23/3/17@12:27pm Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace Yes 16.1°C Sample temperature upon receipt Sufficient sample for analysis Yes Turnaround time requested Standard

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015

Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and	xchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) Method: ME-(AU)-[ENV]AN122									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
TP1 0-0.15	SE163472.001	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP4 0-0.15	SE163472.005	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP6 0-0.15	SE163472.007	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP9 0-0.15	SE163472.010	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP15 0-0.1	SE163472.017	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP18 0-0.15	SE163472.020	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP19 0-0.15	SE163472.021	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP20 0-0.15	SE163472.022	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP21 0-0.15	SE163472.023	LB121254	20 Mar 2017	21 Mar 2017	17 Apr 2017	29 Mar 2017	17 Apr 2017	31 Mar 2017		
TP29 0-0.15	SE163472.030	LB121254	21 Mar 2017	21 Mar 2017	18 Apr 2017	29 Mar 2017	18 Apr 2017	31 Mar 2017		
TP34 0-0.15	SE163472.035	LB121254	21 Mar 2017	21 Mar 2017	18 Apr 2017	29 Mar 2017	18 Apr 2017	31 Mar 2017		
TP39 0-0.1	SE163472.040	LB121254	21 Mar 2017	21 Mar 2017	18 Apr 2017	29 Mar 2017	18 Apr 2017	31 Mar 2017		
TP45 0-0.15	SE163472.045	LB121254	21 Mar 2017	21 Mar 2017	18 Apr 2017	29 Mar 2017	18 Apr 2017	31 Mar 2017		
TP49 0-0.15	SE163472.049	LB121254	21 Mar 2017	21 Mar 2017	18 Apr 2017	29 Mar 2017	18 Apr 2017	31 Mar 2017		
TP52 0.4-0.5	SE163472.051	LB121254	21 Mar 2017	21 Mar 2017	18 Apr 2017	29 Mar 2017	18 Apr 2017	31 Mar 2017		
Gravimetric Determination	Sravimetric Determination of Asbestos in Soil Method: ME-(AU)-[ENV]AN605									

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1 0-0.15	SE163472.001	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP2 0-0.15	SE163472.002	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP3 0-0.15	SE163472.003	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP3 0.5-0.65	SE163472.004	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP6 0-0.15	SE163472.007	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP7 0-0.15	SE163472.008	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP8 0-0.15	SE163472.009	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP10 0-0.15	SE163472.011	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP10 0.5-0.65	SE163472.012	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP11 0-0.15	SE163472.013	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP12 0-0.15	SE163472.014	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP12 0.5-0.65	SE163472.015	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP15 0-0.1	SE163472.017	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP17 0-0.15	SE163472.019	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP22 0-0.15	SE163472.024	LB121298	20 Mar 2017	21 Mar 2017	16 Sep 2017	29 Mar 2017	16 Sep 2017	30 Mar 2017
TP23 0-0.15	SE163472.025	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP23 0.3-0.4	SE163472.026	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP24 0-0.1	SE163472.027	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP27 0-0.1	SE163472.028	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP33 0-0.15	SE163472.034	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP39 0-0.1	SE163472.040	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP44 0-0.15	SE163472.044	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP46 0-0.15	SE163472.046	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP49 0-0.15	SE163472.049	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP52 0-0.15	SE163472.050	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TP52 0.4-0.5	SE163472.051	LB121298	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017

#### Mercury (dissolved) in Water

Aercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311(Perth)/AN312		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
Rinsate R1	SE163472.058	LB121175	20 Mar 2017	21 Mar 2017	17 Apr 2017	28 Mar 2017	17 Apr 2017	29 Mar 2017	
Rinsate R2	SE163472.079	LB121175	21 Mar 2017	21 Mar 2017	18 Apr 2017	28 Mar 2017	18 Apr 2017	29 Mar 2017	
Menouny in Coll							Methodu		

Mercury in Soli								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
C601	SE163472.061	LB121208	20 Mar 2017	21 Mar 2017	17 Apr 2017	28 Mar 2017	17 Apr 2017	30 Mar 2017
C602	SE163472.062	LB121208	20 Mar 2017	21 Mar 2017	17 Apr 2017	28 Mar 2017	17 Apr 2017	30 Mar 2017
C603	SE163472.063	LB121208	20 Mar 2017	21 Mar 2017	17 Apr 2017	28 Mar 2017	17 Apr 2017	30 Mar 2017
C604	SE163472.064	LB121208	20 Mar 2017	21 Mar 2017	17 Apr 2017	28 Mar 2017	17 Apr 2017	30 Mar 2017
C605	SE163472.065	LB121208	20 Mar 2017	21 Mar 2017	17 Apr 2017	28 Mar 2017	17 Apr 2017	30 Mar 2017
C606	SE163472.066	LB121208	21 Mar 2017	21 Mar 2017	18 Apr 2017	28 Mar 2017	18 Apr 2017	30 Mar 2017
C607	SE163472.067	LB121208	21 Mar 2017	21 Mar 2017	18 Apr 2017	28 Mar 2017	18 Apr 2017	30 Mar 2017
C608	SE163472.068	LB121208	21 Mar 2017	21 Mar 2017	18 Apr 2017	28 Mar 2017	18 Apr 2017	30 Mar 2017
C609	SE163472.069	LB121208	21 Mar 2017	21 Mar 2017	18 Apr 2017	28 Mar 2017	18 Apr 2017	30 Mar 2017



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Mercury in Soil (continued) Method: ME-(AU)-[ENV]AN312 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted C610 SE163472.070 LB121208 21 Mar 2017 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 C611 SE163472.071 LB121208 21 Mar 2017 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 C612 SE163472.072 LB121210 21 Mar 2017 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 C613 SE163472.073 LB121210 21 Mar 2017 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 C614 SE163472.074 LB121210 21 Mar 2017 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 21 Mar 2017 30 Mar 2017 C615 SE163472.075 21 Mar 2017 28 Mar 2017 LB121210 18 Apr 2017 18 Apr 2017 C616 SE163472.076 LB121210 21 Mar 2017 21 Mar 2017 28 Mar 2017 18 Apr 2017 18 Apr 2017 30 Mar 2017 Duplicate CD1 SE163472.077 LB121210 21 Mar 2017 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 21 Mar 2017 Duplicate CD2 SE163472.078 LB121210 21 Mar 2017 18 Apr 2017 28 Mar 2017 18 Apr 2017 30 Mar 2017 Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-IENVIAN320/AN321 Received Analysis Due Sample Name QC Ref Sampled Extraction Due Extracted Analysed Sample No. SE163472.058 20 Mar 2017 21 Mar 2017 Rinsate R1 LB121333 16 Sep 2017 30 Mar 2017 16 Sep 2017 30 Mar 2017 Rinsate R2 SE163472.079 LB121333 21 Mar 2017 21 Mar 2017 17 Sep 2017 30 Mar 2017 17 Sep 2017 30 Mar 2017 Moisture Content Method: ME-(AU)-[ENVIAN002 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1 0-0.15 SE163472.001 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP2 0-0.15 SE163472.002 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 30 Mar 2017 TP3 0-0.15 SE163472.003 20 Mar 2017 21 Mar 2017 27 Mar 2017 LB121121 03 Apr 2017 01 Apr 2017 LB121121 TP4 0-0.15 SE163472.005 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP5 0-0.15 SE163472.006 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP6 0-0.15 SE163472.007 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP7 0-0.15 SE163472.008 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 21 Mar 2017 TP8 0-0.15 SE163472.009 LB121121 20 Mar 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 03 Apr 2017 TP9 0-0.15 SE163472.010 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP10 0-0.15 SE163472.011 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP11 0-0.15 SE163472.013 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP12 0-0.15 20 Mar 2017 21 Mar 2017 27 Mar 2017 30 Mar 2017 SE163472.014 LB121121 03 Apr 2017 01 Apr 2017 TP13 0-0 15 SE163472 016 I B121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP15 0-0.1 SE163472.017 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP16 0-0.15 SE163472.018 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 27 Mar 2017 TP17 0-0.15 SE163472.019 20 Mar 2017 21 Mar 2017 30 Mar 2017 LB121121 03 Apr 2017 01 Apr 2017 TP18 0-0.15 SE163472.020 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP19 0-0.15 SE163472.021 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP20 0-0.15 SE163472.022 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP21 0-0.15 SE163472.023 LB121121 20 Mar 2017 21 Mar 2017 03 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 27 Mar 2017 30 Mar 2017 TP22 0-0.15 SE163472.024 LB121121 20 Mar 2017 21 Mar 2017 01 Apr 2017 03 Apr 2017 TP23 0-0.15 SE163472.025 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP23 0.3-0.4 SE163472.026 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP24 0-0.1 SE163472.027 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 30 Mar 2017 TP27 0-0.1 SE163472.028 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 TP28 0-0.15 SE163472.029 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP29 0-0.15 SE163472.030 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP30 0-0.15 21 Mar 2017 SE163472.031 LB121121 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP31 0-0.15 SE163472.032 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP32 0-0.15 SE163472.033 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP33 0-0.15 SE163472.034 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP34 0-0.15 SE163472.035 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 TP35 0-0.15 SE163472.036 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 27 Mar 2017 TP36 0-0 15 SE163472 037 LB121121 21 Mar 2017 21 Mar 2017 01 Apr 2017 30 Mar 2017 04 Apr 2017 21 Mar 2017 27 Mar 2017 30 Mar 2017 21 Mar 2017 04 Apr 2017 TP37 0-0.15 SE163472.038 LB121121 01 Apr 2017 TP38 0-0.15 SE163472.039 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP39 0-0.1 SE163472.040 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 29 Mar 2017 21 Mar 2017 21 Mar 2017 27 Mar 2017 TP41 0-0.15 SE163472.041 LB121121 04 Apr 2017 01 Apr 2017 30 Mar 2017 TP42 0-0.15 SE163472.042 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP43 0-0.15 SE163472.043 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP44 0-0.15 SE163472.044 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 29 Mar 2017 TP45 0-0.15 SE163472.045 21 Mar 2017 21 Mar 2017 27 Mar 2017 LB121121 04 Apr 2017 01 Apr 2017 TP46 0-0.15 SE163472.046 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017 TP47 0-0.15 SE163472.047 LB121121 21 Mar 2017 21 Mar 2017 04 Apr 2017 27 Mar 2017 01 Apr 2017 30 Mar 2017



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Moisture Content (continued)

Noisture Content (continu Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	ME-(AU)-[ENV]A Analysed
5ample Name TP48 0-0.15	Sample No. SE163472.048	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
							-	
P49 0-0.15	SE163472.049	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	29 Mar 2017
P52 0-0.15	SE163472.050	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
P52 0.4-0.5	SE163472.051	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	29 Mar 2017
(1	SE163472.052	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	29 Mar 2017
(2	SE163472.053	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
X3	SE163472.054	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
X4	SE163472.055	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
X5	SE163472.056	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
X6	SE163472.057	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2601	SE163472.061	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2602	SE163472.062	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2603	SE163472.063	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2604	SE163472.064	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2605	SE163472.065	LB121121	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
C606	SE163472.066	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
C607	SE163472.067	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2608	SE163472.068	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
C609	SE163472.069	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
C610	SE163472.070	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
611	SE163472.071	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2612	SE163472.072	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2613	SE163472.073	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
C614	SE163472.074	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2615	SE163472.075	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
2616	SE163472.076	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
Duplicate CD1	SE163472.077	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
Duplicate CD2	SE163472.078	LB121121	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	01 Apr 2017	30 Mar 2017
C Pesticides in Soil							· · · · · · · · · · · · · · · · · · ·	ME-(AU)-[ENV]A
Sample Name	Comula No	QC Ref	Compled	Received	Extraction Due	Extracted	Analysis Due	
•	Sample No.		Sampled					Analysed
FP1 0-0.15	SE163472.001	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
P6 0-0.15	SE163472.007	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
FP10 0-0.15	SE163472.011	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
FP15 0-0.1	SE163472.017	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
P23 0-0.15	SE163472.025	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
P33 0-0.15	SE163472.034	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
P39 0-0.1	SE163472.040	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
P49 0-0.15	SE163472.049	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
P52 0.4-0.5	SE163472.051	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
(1	SE163472.052	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
2601							07 May 2017	
	SE163472.061	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 Way 2017	30 Mar 2017
2602	SE163472.061 SE163472.062	LB121150 LB121150	20 Mar 2017 20 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017	
C602 C604								30 Mar 2017
604	SE163472.062	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017 30 Mar 2017
C604 C606	SE163472.062 SE163472.064	LB121150 LB121150	20 Mar 2017 20 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017 30 Mar 2017
:604 :606 :608	SE163472.062 SE163472.064 SE163472.066	LB121150 LB121150 LB121150	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017
604 606 608 609	SE163472.062 SE163472.064 SE163472.066 SE163472.068	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150	20 Mar 2017 20 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017 28 Mar 2017 28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017 07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017
604 606 608 609 610	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.069 SE163472.070	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150	20 Mar 2017 20 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017 28 Mar 2017 28 Mar 2017 28 Mar 2017 28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017 07 May 2017 07 May 2017 07 May 2017 07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017
604 606 608 609 610 611	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.070	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150	20 Mar 2017 20 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017 30 Mar 2017
604 606 608 609 610 611 612	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.071	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017
604 606 608 609 610 611 612 613	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.072 SE163472.073	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017
2604           2606           2608           2609           2610           2611           2612           2613           2614	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.072 SE163472.073 SE163472.073	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 201 30 Mar 201
C604           C606           C608           C609           C610           C611           C612           C613           C614           C616	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.072 SE163472.073 SE163472.074 SE163472.076	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017
2604           2606           2608           2609           2610           2611           2612           2613           2614           2616           Duplicate CD1	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.072 SE163472.073 SE163472.074 SE163472.076 SE163472.077	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017
2604 2606 2609 2610 2611 2612 2613 2614 2613 2614 2616 2616 2616	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.072 SE163472.073 SE163472.074 SE163472.076 SE163472.077	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017
604 606 609 610 6611 6612 6613 6614 6614 6616 fullicate CD1 AH (Polynuclear Aromati	SE163472.062 SE163472.064 SE163472.066 SE163472.068 SE163472.069 SE163472.070 SE163472.071 SE163472.072 SE163472.073 SE163472.074 SE163472.076 SE163472.077	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017	30 Mar 2017 30 Mar 2017
604 606 608 609 610 611 612 613 614 616 uplicate CD1 <b>LH (Polynuclear Aromati</b> ample Name	SE163472.062           SE163472.064           SE183472.066           SE183472.068           SE163472.070           SE163472.071           SE163472.072           SE163472.073           SE163472.074           SE163472.076           SE163472.077           SE163472.076           SE163472.077           SE163472.076           SE163472.077           SE163472.076           SE163472.077	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151 LB121151 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017 03 Apr 2017 04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017 Method:	30 Mar 2017 30 Mar 2017 <b>ME-(AU)-[ENV]A</b> Analysed
3604           3606           3608           3609           3610           3611           3612           3613           3614	SE163472.062           SE163472.064           SE183472.066           SE183472.068           SE163472.070           SE163472.071           SE163472.072           SE163472.073           SE163472.074           SE163472.076           SE163472.077           SE163472.076           SE163472.077           SE163472.076           SE163472.077           SE163472.077           SE163472.077	LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121150 LB121151 LB121151 LB121151 LB121151 LB121151	20 Mar 2017 20 Mar 2017 21 Mar 2017	21 Mar 2017 21 Mar 2017	03 Apr 2017           03 Apr 2017           04 Apr 2017	28 Mar 2017 28 Mar 2017	07 May 2017 07 May 2017 Method: Analysis Due	30 Mar 2017 30 Mar 2017

TP10 0-0.15

SE163472.011

SE163472.017

LB121150

LB121150

20 Mar 2017

20 Mar 2017

21 Mar 2017

21 Mar 2017

03 Apr 2017

03 Apr 2017

28 Mar 2017

28 Mar 2017

07 May 2017

07 May 2017

30 Mar 2017

30 Mar 2017



Method: ME-(AU)-[ENV]AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### DAH (Polynuclear Aromatic Hydrocarbone) in Soil (continued)

AH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)								Method: ME-(AU)-[ENV]AN420	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
TP23 0-0.15	SE163472.025	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
TP33 0-0.15	SE163472.034	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
TP39 0-0.1	SE163472.040	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
TP49 0-0.15	SE163472.049	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
TP52 0.4-0.5	SE163472.051	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
X1	SE163472.052	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C601	SE163472.061	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C602	SE163472.062	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C604	SE163472.064	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C606	SE163472.066	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C608	SE163472.068	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C609	SE163472.069	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C610	SE163472.070	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C611	SE163472.071	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C612	SE163472.072	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C613	SE163472.073	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C614	SE163472.074	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
C616	SE163472.076	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	
Duplicate CD1	SE163472.077	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017	

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1 0-0.15	SE163472.001	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP6 0-0.15	SE163472.007	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP10 0-0.15	SE163472.011	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP15 0-0.1	SE163472.017	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP23 0-0.15	SE163472.025	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP33 0-0.15	SE163472.034	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP39 0-0.1	SE163472.040	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP49 0-0.15	SE163472.049	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
TP52 0.4-0.5	SE163472.051	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
X1	SE163472.052	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C601	SE163472.061	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C602	SE163472.062	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C604	SE163472.064	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C606	SE163472.066	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C608	SE163472.068	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C609	SE163472.069	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C610	SE163472.070	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C611	SE163472.071	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C612	SE163472.072	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C613	SE163472.073	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C614	SE163472.074	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
C616	SE163472.076	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
Duplicate CD1	SE163472.077	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	30 Mar 2017
oH in soil (1:5)							Method: I	ME-(AU)-[ENV]AN10
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1 0-0.15	SE163472.001	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP4 0-0.15	SE163472.005	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TD6 0 0 1E	05462472.007	1 8121107	20 Mar 2017	01 11 0017	27 Mar 2017	07.14 0047	00 14 0017	07.140047

TP4 0-0.15	SE163472.005	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP6 0-0.15	SE163472.007	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP9 0-0.15	SE163472.010	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP15 0-0.1	SE163472.017	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP18 0-0.15	SE163472.020	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP19 0-0.15	SE163472.021	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP20 0-0.15	SE163472.022	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP21 0-0.15	SE163472.023	LB121107	20 Mar 2017	21 Mar 2017	27 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP29 0-0.15	SE163472.030	LB121107	21 Mar 2017	21 Mar 2017	28 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP34 0-0.15	SE163472.035	LB121107	21 Mar 2017	21 Mar 2017	28 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP39 0-0.1	SE163472.040	LB121107	21 Mar 2017	21 Mar 2017	28 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP45 0-0.15	SE163472.045	LB121107	21 Mar 2017	21 Mar 2017	28 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017

PCBs in Soil



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued)							Method: I	ME-(AU)-[ENV]AN10
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP49 0-0.15	SE163472.049	LB121107	21 Mar 2017	21 Mar 2017	28 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
TP52 0.4-0.5	SE163472.051	LB121107	21 Mar 2017	21 Mar 2017	28 Mar 2017	27 Mar 2017	28 Mar 2017	27 Mar 2017
Total Recoverable Metals in	n Soil/Waste Solids/Materi	ials by ICPOES					Method: ME-(AU	)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
C601	SE163472.061	LB121246	20 Mar 2017	21 Mar 2017	16 Sep 2017	28 Mar 2017	16 Sep 2017	31 Mar 2017
C602	SE163472.062	LB121246	20 Mar 2017	21 Mar 2017	16 Sep 2017	28 Mar 2017	16 Sep 2017	31 Mar 2017
C603	SE163472.063	LB121246	20 Mar 2017	21 Mar 2017	16 Sep 2017	28 Mar 2017	16 Sep 2017	31 Mar 2017
C604	SE163472.064	LB121246	20 Mar 2017	21 Mar 2017	16 Sep 2017	28 Mar 2017	16 Sep 2017	31 Mar 2017
C605	SE163472.065	LB121246	20 Mar 2017	21 Mar 2017	16 Sep 2017	28 Mar 2017	16 Sep 2017	31 Mar 2017
C606	SE163472.066	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C607	SE163472.067	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C608	SE163472.068	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C609	SE163472.069	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C610	SE163472.070	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C611	SE163472.071	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C612	SE163472.072	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C613	SE163472.073	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C614	SE163472.074	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C615	SE163472.075	LB121246	21 Mar 2017	21 Mar 2017	17 Sep 2017	28 Mar 2017	17 Sep 2017	31 Mar 2017
C616	SE163472.076	LB121247	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
Duplicate CD1	SE163472.077	LB121247	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
Duplicate CD2	SE163472.078	LB121247	21 Mar 2017	21 Mar 2017	17 Sep 2017	29 Mar 2017	17 Sep 2017	30 Mar 2017
TRH (Total Recoverable Hy	ydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN40
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1 0-0.15	SE163472.001	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP6 0-0.15	SE163472.007	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP10 0-0.15	SE163472.011	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP15 0-0.1	SE163472.017	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP23 0-0.15	SE163472.025	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP33 0-0.15	SE163472.034	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP39 0-0.1	SE163472.040	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP49 0-0.15	SE163472.049	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
TP52 0.4-0.5	SE163472.051	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
X1	SE163472.052	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C601	SE163472.061	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C602	SE163472.062	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C604	SE163472.064	LB121150	20 Mar 2017	21 Mar 2017	03 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C606	SE163472.066	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C608	SE163472.068	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C609	SE163472.069	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C610	SE163472.070	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C611	SE163472.071	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C612	SE163472.072	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C613	SE163472.073	LB121150	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C614	SE163472.074	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
C616	SE163472.076	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
Duplicate CD1	SE163472.077	LB121151	21 Mar 2017	21 Mar 2017	04 Apr 2017	28 Mar 2017	07 May 2017	29 Mar 2017
/OC's in Soil							Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1 0-0.15	SE163472.001	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP6 0-0.15	SE163472.007	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP10 0-0.15	SE163472.011	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP15 0-0.1	SE163472.017	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP23 0-0.15	SE163472.025	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP33 0-0.15	SE163472.034	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP39 0-0.1	SE163472.040	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP49 0-0.15	SE163472.049	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP52 0.4-0.5	SE163472.051	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
X1	SE163472.052	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
Tripspike TS1	SE163472.059	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
Tripspike TS2	SE163472.060	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
Volatile Petroleum Hydrod	arbons in Soil						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1 0-0.15	SE163472.001	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP6 0-0.15	SE163472.007	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP10 0-0.15	SE163472.011	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP15 0-0.1	SE163472.017	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP23 0-0.15	SE163472.025	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP33 0-0.15	SE163472.034	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP39 0-0.1	SE163472.040	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP49 0-0.15	SE163472.049	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
TP52 0.4-0.5	SE163472.051	LB121106	21 Mar 2017	21 Mar 2017	04 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
X1	SE163472.052	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
Tripspike TS1	SE163472.059	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017
Tripspike TS2	SE163472.060	LB121106	20 Mar 2017	21 Mar 2017	03 Apr 2017	27 Mar 2017	06 May 2017	29 Mar 2017



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

					_
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	C601	SE163472.061	%	60 - 130%	116
	C602	SE163472.062	%	60 - 130%	91
	C604	SE163472.064	%	60 - 130%	93
	C606	SE163472.066	%	60 - 130%	97
	C608	SE163472.068	%	60 - 130%	96
	C609	SE163472.069	%	60 - 130%	95
	C610	SE163472.070	%	60 - 130%	95
	C611	SE163472.071	%	60 - 130%	96
	C612	SE163472.072	%	60 - 130%	92
	C613	SE163472.073	%	60 - 130%	92
	C614	SE163472.074	%	60 - 130%	112
	C616	SE163472.076	%	60 - 130%	93
	Duplicate CD1	SE163472.077	%	60 - 130%	117
	Bupildate OD I	02100412.011	70		
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: ME	-(AU)-[ENV]/
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	TP1 0-0.15	SE163472.001	%	70 - 130%	94
	TP6 0-0.15	SE163472.007	%	70 - 130%	96
	TP10 0-0.15	SE163472.011	%	70 - 130%	96
	TP15 0-0.1	SE163472.017	%	70 - 130%	94
	TP23 0-0.15	SE163472.025	%	70 - 130%	96
	TP33 0-0.15	SE163472.034	%	70 - 130%	92
	TP39 0-0.1	SE163472.040	%	70 - 130%	94
	TP49 0-0.15	SE163472.040			
			%	70 - 130%	92
	TP52 0.4-0.5	SE163472.051	%	70 - 130%	96
	X1	SE163472.052	%	70 - 130%	94
114-p-terphenyl (Surrogate)	TP1 0-0.15	SE163472.001	%	70 - 130%	98
	TP6 0-0.15	SE163472.007	%	70 - 130%	96
	TP10 0-0.15	SE163472.011	%	70 - 130%	94
	TP15 0-0.1	SE163472.017	%	70 - 130%	98
	TP23 0-0.15	SE163472.025	%	70 - 130%	100
	TP33 0-0.15	SE163472.034	%	70 - 130%	94
	TP39 0-0.1	SE163472.040	%	70 - 130%	96
	TP49 0-0.15	SE163472.049	%	70 - 130%	90
	TP52 0.4-0.5	SE163472.051	%	70 - 130%	94
	X1	SE163472.052	%	70 - 130%	96
d5-nitrobenzene (Surrogate)	TP1 0-0.15	SE163472.001	%	70 - 130%	96
	TP6 0-0.15	SE163472.007	%	70 - 130%	94
		SE163472.001	%		
	TP10 0-0.15			70 - 130%	96
	TP15 0-0.1	SE163472.017	%	70 - 130%	94
	TP23 0-0.15	SE163472.025	%	70 - 130%	98
	TP33 0-0.15	SE163472.034	%	70 - 130%	94
	TP39 0-0.1	SE163472.040	%	70 - 130%	100
	TP49 0-0.15	SE163472.049	%	70 - 130%	98
	TP52 0.4-0.5	SE163472.051	%	70 - 130%	102
	X1	SE163472.052	%	70 - 130%	102
Bs in Soil				Method: ME	-(AU)-IENVI
arameter	Sample Name	Sample Number	Units	Criteria	Recover
				60 - 130%	
etrachloro-m-xylene (TCMX) (Surrogate)	<u>C601</u>	SE163472.061	%		116
	C602	SE163472.062	%	60 - 130%	91
	C604	SE163472.064	%	60 - 130%	93
	C606	SE163472.066	%	60 - 130%	97
	C608	SE163472.068	%	60 - 130%	96
	C612	SE163472.072	%	60 - 130%	92
	C613	SE163472.073	%	60 - 130%	92
	C614	SE163472.074	%	60 - 130%	112
	C616	SE163472.076	%	60 - 130%	93
	Duplicate CD1	SE163472.077	%	60 - 130%	117
Chain Sail		-			
IC's in Soil				Method: ME	-(AU)-[ENV]
arameter	Sample Name	Sample Number	Units		

31/3/2017



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (continued)					E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	96
	TP6 0-0.15	SE163472.007	%	60 - 130%	94
	TP10 0-0.15	SE163472.011	%	60 - 130%	97
	TP15 0-0.1	SE163472.017	%	60 - 130%	97
	TP23 0-0.15	SE163472.025	%	60 - 130%	99
	TP33 0-0.15	SE163472.034	%	60 - 130%	95
	TP39 0-0.1	SE163472.040	%	60 - 130%	104
	TP49 0-0.15	SE163472.049	%	60 - 130%	98
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	96
	X1	SE163472.052	%	60 - 130%	96
	Tripspike TS1	SE163472.059	%	60 - 130%	96
	Tripspike TS2	SE163472.060	%	60 - 130%	96
4-1,2-dichloroethane (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	83
	TP6 0-0.15	SE163472.007	%	60 - 130%	89
	TP10 0-0.15	SE163472.011	%	60 - 130%	95
	TP15 0-0.1	SE163472.017	%	60 - 130%	91
	TP23 0-0.15	SE163472.025	%	60 - 130%	90
	TP33 0-0.15	SE163472.034	%	60 - 130%	91
	TP39 0-0.1	SE163472.040	%	60 - 130%	86
	TP49 0-0.15	SE163472.049	%	60 - 130%	96
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	91
	X1	SE163472.052	%	60 - 130%	89
	Tripspike TS1	SE163472.059	%	60 - 130%	100
	Tripspike TS2	SE163472.060	%	60 - 130%	99
B-toluene (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	70
(canogato)	TP6 0-0.15	SE163472.007	%	60 - 130%	77
	TP10 0-0.15	SE163472.007	%	60 - 130%	83
	TP15 0-0.1	SE163472.017	%	60 - 130%	80
	TP23 0-0.15	SE163472.025	%	60 - 130%	78
	TP33 0-0.15	SE163472.025	%	60 - 130%	78
			%		
	TP39 0-0.1 TP49 0-0.15	SE163472.040 SE163472.049	%	60 - 130%	73 83
			%	60 - 130%	
	TP52 0.4-0.5	SE163472.051		60 - 130%	76
	X1	SE163472.052	%	60 - 130%	76
	Tripspike TS1	SE163472.059	%	60 - 130%	90
	Tripspike TS2	SE163472.060	%	60 - 130%	88
ibromofluoromethane (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	90
	TP6 0-0.15	SE163472.007	%	60 - 130%	74
	TP10 0-0.15	SE163472.011	%	60 - 130%	80
	TP15 0-0.1	SE163472.017	%	60 - 130%	77
	TP23 0-0.15	SE163472.025	%	60 - 130%	76
	TP33 0-0.15	SE163472.034	%	60 - 130%	75
	TP39 0-0.1	SE163472.040	%	60 - 130%	71
	TP49 0-0.15	SE163472.049	%	60 - 130%	78
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	74
	X1	SE163472.052	%	60 - 130%	73
	Tripspike TS1	SE163472.059	%	60 - 130%	83
	Tripspike TS2	SE163472.060	%	60 - 130%	81

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	96
	TP6 0-0.15	SE163472.007	%	60 - 130%	94
	TP10 0-0.15	SE163472.011	%	60 - 130%	97
	TP15 0-0.1	SE163472.017	%	60 - 130%	97
	TP23 0-0.15	SE163472.025	%	60 - 130%	99
	TP33 0-0.15	SE163472.034	%	60 - 130%	95
	TP39 0-0.1	SE163472.040	%	60 - 130%	104
	TP49 0-0.15	SE163472.049	%	60 - 130%	98
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	96
	X1	SE163472.052	%	60 - 130%	96



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

olatile Petroleum Hydrocarbons in Soll (continued)				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d4-1,2-dichloroethane (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	83
	TP6 0-0.15	SE163472.007	%	60 - 130%	89
	TP10 0-0.15	SE163472.011	%	60 - 130%	95
	TP15 0-0.1	SE163472.017	%	60 - 130%	91
	TP23 0-0.15	SE163472.025	%	60 - 130%	90
	TP33 0-0.15	SE163472.034	%	60 - 130%	91
	TP39 0-0.1	SE163472.040	%	60 - 130%	86
	TP49 0-0.15	SE163472.049	%	60 - 130%	96
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	91
	X1	SE163472.052	%	60 - 130%	89
d8-toluene (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	70
	TP6 0-0.15	SE163472.007	%	60 - 130%	77
	TP10 0-0.15	SE163472.011	%	60 - 130%	83
	TP15 0-0.1	SE163472.017	%	60 - 130%	80
	TP23 0-0.15	SE163472.025	%	60 - 130%	78
	TP33 0-0.15	SE163472.034	%	60 - 130%	78
	TP39 0-0.1	SE163472.040	%	60 - 130%	73
	TP49 0-0.15	SE163472.049	%	60 - 130%	83
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	76
	X1	SE163472.052	%	60 - 130%	76
Dibromofluoromethane (Surrogate)	TP1 0-0.15	SE163472.001	%	60 - 130%	90
	TP6 0-0.15	SE163472.007	%	60 - 130%	74
	TP10 0-0.15	SE163472.011	%	60 - 130%	80
	TP15 0-0.1	SE163472.017	%	60 - 130%	77
	TP23 0-0.15	SE163472.025	%	60 - 130%	76
	TP33 0-0.15	SE163472.034	%	60 - 130%	75
	TP39 0-0.1	SE163472.040	%	60 - 130%	71
	TP49 0-0.15	SE163472.049	%	60 - 130%	78
	TP52 0.4-0.5	SE163472.051	%	60 - 130%	74
	X1	SE163472.052	%	60 - 130%	73



## **METHOD BLANKS**

### SE163472 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation E	change Capacity (CEC/ESP/SAR)		Method: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units L	OR

Vercury	(dissolved)	in Water

Mercury (dissolved) in Water		Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312	
Sample Number	Parameter	Units	LOR	Result
LB121175.001	Mercury	mg/L	0.0001	<0.0001

#### Mercury in Soil

Mercury in Soil			Metho	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB121208.001	Mercury	mg/kg	0.05	<0.05
LB121210.001	Mercury	mg/kg	0.05	<0.05

#### Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved) by ICPOES			Method: ME-(AU)-[ENV]AN320/AN	
Sample Number	Parameter	Units	LOR	Result
LB121333.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Chromium, Cr	mg/L	0.005	<0.005
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01
OC Pesticides in Soil			Meth	d: ME-(AU)-IENVIAN420

### C Pasticidas in Soil

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB121150.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.05	<0.05
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	89
LB121151.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1



## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

DC Pesticides in Soll (		Development			od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B121151.001		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.05	<0.05
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex		0.1	<0.1
	0		mg/kg	-	
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%		93
AH (Polynuclear Aro	omatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AI
ample Number		Parameter	Units	LOR	Result
B121150.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
				0.1	<0.1
		1-methylnaphthalene	mg/kg		
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
				0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	÷	
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	94
		2-fluorobiphenyl (Surrogate)	%	-	92
		d14-p-terphenyl (Surrogate)	%	-	94
CBs in Soil				Meth	od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
B121150.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochior 1254	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	89
B121151.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
				0.2	
		Arochlor 1260	mg/kg		<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
				0.2	<0.2 <1



## **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Me	etals in Soil/Waste Solids/Materia	als by ICPOES		Method: ME-	(AU)-[ENV]AN040/AN3
Sample Number		Parameter	Units	LOR	Result
LB121246.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
B121247.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
		Zinc, Zn	mg/kg	0.5	<0.5
RH (Total Recoveral	ble Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN
ample Number		Parameter	Units	LOR	Result
LB121150.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
OC's in Soil				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
.B121106.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
	-	Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	94
	5	d4-1,2-dichloroethane (Surrogate)	%	-	104
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	98
	Totals	Total BTEX	mg/kg	0.6	<0.6
olatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN
	drocarbons in Soil	Parameter	Units	LOR	od: ME-(AU)-[ENV]AN Result
Sample Number	rdrocarbons in Soil			LOR	Result
Sample Number		TRH C6-C9	mg/kg		Result <20
<mark>′olatile Petroleum Hy</mark> Sample Number .B121106.001	rdrocarbons in Soil Surrogates			LOR 20	



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil							Meth	od: ME-(AU)	-[ENV]AN312
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
SE163472.062	LB121208.014		Mercury		0.05	<0.05	< 0.05	179	0
SE163472.002	LB121208.014		Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE163482.003	LB121208.024		Mercury	mg/kg	0.05	<0.05	<0.05	193	0
SE163512.004	LB121210.014		Mercury	mg/kg mg/kg	0.05	<0.05	<0.05	200	0
	LB121210.024			iiig/kg	0.05	<b>~0.05</b>			
Moisture Content							Meth	od: ME-(AU)	-[ENV]AN002
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472.011	LB121121.011		% Moisture	%w/w	0.5	15	16	37	10
SE163472.023	LB121121.022		% Moisture	%w/w	0.5	25	25	34	0
SE163472.066	LB121121.066		% Moisture	%w/w	0.5	17	17	36	3
SE163472.076	LB121121.077		% Moisture	%w/w	0.5	15	14	37	5
SE163472.078	LB121121.080		% Moisture	%w/w	0.5	22	20	35	7
OC Pesticides in S	oil						Meth	od: ME-(AU)	-[ENV]AN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472.066	LB121150.028		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan		0.1	<0.1	0	200	0
			Gamma Chlordane	mg/kg	0.2	<0.2	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
				mg/kg			0		
			trans-Nonachlor	mg/kg	0.1	<0.1		200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.05	<0.05	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.148	30	1
SE163472.074	LB121151.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
					0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg					
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
									0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			p.p'-DDE Dieldrin Endrin o,p'-DDD	mg/kg mg/kg	0.1 0.05	<0.1 <0.05	0	200 200	0
			p,p'-DDE Dieldrin Endrin	mg/kg mg/kg mg/kg	0.1 0.05 0.2	<0.1 <0.05 <0.2	0 0 0	200 200 200	0 0 0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Arochlor 1221

Arochlor 1232

Arochlor 1242

Arochlor 1248

Arochlor 1254

Arochlor 1260

Arochlor 1262

Arochlor 1268

Surrogates

Total PCBs (Arochlors)

Tetrachloro-m-xylene (TCMX) (Surrogate)

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE163472.074	LB121151.025		p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	C
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	(
			Isodrin	mg/kg	0.1	<0.1	0	200	
			Mirex	mg/kg	0.1	<0.1	0	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.171	30	
H (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	nod: ME-(AU)-	[ENV]
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RP
163472.052	LB121150.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
					0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg					
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>200</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>134</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>175</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5	30	
Bs in Soil								nod: ME-(AU)-	
riginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RP
163472.066	LB121150.026		Arochlor 1016	mg/kg	0.2	<0.2	0	200	
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	
			Arochlor 1242	mg/kg	0.2	<0.2	0	200	
			Arochlor 1248	mg/kg	0.2	<0.2	0	200	
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.148	30	
163472.074	LB121151.025		Arochlor 1016	mg/kg	0.2	<0.2	0	200	

mg/kg

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

1

< 0.2

<0.2

<0.2

< 0.2

<0.2

<0.2

<0.2

<0.2

<1

0

0

0

0

0

0

0

0

0

0

0.171

200

200

200

200

200

200

200

200

200

30

0

0

0

0

0

0

0

0

0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) Method: ME-(AU)-[ENV]/								
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472.005	LB121107.014	рН	pH Units	-	6.0	5.9	32	1
SE163472.051	LB121107.032	рН	pH Units	-	8.3	8.5	31	2

### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Original	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD %
SE163457.005	LB121247.014		Arsenic, As	mg/kg	3	<3	<3	78	26
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	27	27	32	0
			Copper, Cu	mg/kg	0.5	23	12	33	61 @
			Lead, Pb	mg/kg	1	9	9	41	8
			Nickel, Ni	mg/kg	0.5	4.6	4.2	41	8
			Zinc, Zn	mg/kg	0.5	16	13	44	18
SE163457.010	LB121247.020		Arsenic, As	mg/kg	3	7	7	44	10
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	154	0
			Chromium, Cr	mg/kg	0.3	19	18	33	7
			Copper, Cu	mg/kg	0.5	25	24	32	4
			Lead, Pb	mg/kg	1	110	100	31	8
			Nickel, Ni	mg/kg	0.5	8.5	9.6	36	12
			Zinc, Zn	mg/kg	0.5	80	79	33	1
SE163472.066	LB121246.014		Arsenic, As	mg/kg	3	7	7	44	5
			Cadmium, Cd	mg/kg	0.3	<0.3	0.3	129	10
			Chromium, Cr	mg/kg	0.3	9.8	11	35	9
			Copper, Cu	mg/kg	0.5	28	28	32	2
			Lead, Pb	mg/kg	1	25	26	34	5
			Nickel, Ni	mg/kg	0.5	9.7	10	35	6
			Zinc, Zn	mg/kg	0.5	76	77	33	2
SE163472.075	LB121246.024		Arsenic, As	mg/kg	3	7	6	45	23
			Cadmium, Cd	mg/kg	0.3	0.3	0.3	128	2
			Chromium, Cr	mg/kg	0.3	12	12	34	4
			Copper, Cu	mg/kg	0.5	17	17	33	2
			Lead, Pb	mg/kg	1	27	29	34	7
			Nickel, Ni	mg/kg	0.5	13	13	34	2
			Zinc, Zn	mg/kg	0.5	58	56	34	4
RH (Total Recov	erable Hydrocarbons) in Soi	il					Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472.052	LB121150.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
	TRI	H F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
OC's in Soil			· ·				Meth	od: ME-(AU)-	[ENVIAN4

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472.052	LB121106.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.1	50	11
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	4.2	50	6
			d8-toluene (Surrogate)	mg/kg	-	3.8	3.5	50	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	4.9	50	2
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

•	ntinued)							od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163482.006	LB121106.023	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	173	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.7	5.1	50	10
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.4	50	3
			d8-toluene (Surrogate)	mg/kg	-	3.5	3.6	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.7	50	0
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
/olatile Petroleum	n Hydrocarbons in Soi	L					Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472.052	LB121106.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.1	30	11
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	4.2	30	6
			d8-toluene (Surrogate)	mg/kg	-	3.8	3.5	30	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	4.9	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
							-05	000	0
SE163482.006	LB121106.023		TRH C6-C10	mg/kg	25	<25	<25	200	
SE163482.006	LB121106.023		TRH C6-C10 TRH C6-C9	mg/kg mg/kg	25 20	<25	<25	200	0
SE163482.006	LB121106.023	Surrogates							
SE163482.006	LB121106.023	Surrogates	TRH C6-C9	mg/kg	20	<20	<20	200	0
SE163482.006	LB121106.023	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg	- 20	<20 5.7	<20 5.1	200 30	0 10
SE163482.006	LB121106.023	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg	20 - -	<20 5.7 4.3	<20 5.1 4.4	200 30 30	0 10 3
SE163482.006	LB121106.023	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg	20 - - -	<20 5.7 4.3 3.5	<20 5.1 4.4 3.6	200 30 30 30	0 10 3 3



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Exchangeable Cations and C	ation Exchange Capacity (CEC/ESP/SAR)				N	lethod: ME-(A	U)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121254.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	91
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	88
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	93
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	91
Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121208.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	96
LB121210.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	96

#### Metals in Water (Dissolved) by ICPOES

Metals in Water (Dissolved)	by ICPOES				Method:	ME-(AU)-[EN\	/JAN320/AN321
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121333.002	Arsenic, As	mg/L	0.02	1.9	2	80 - 120	97
	Cadmium, Cd	mg/L	0.001	2.0	2	80 - 120	100
	Chromium, Cr	mg/L	0.005	2.0	2	80 - 120	101
	Copper, Cu	mg/L	0.005	2.0	2	80 - 120	100
	Lead, Pb	mg/L	0.02	2.0	2	80 - 120	100
	Nickel, Ni	mg/L	0.005	2.0	2	80 - 120	101
	Zinc, Zn	mg/L	0.01	2.0	2	80 - 120	98
OC Pasticidas in Soil						Aethod: ME_(A	

OC Pesticides in Sc	bil					I	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121150.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	109
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	102
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	104
		Dieldrin	mg/kg	0.05	0.19	0.2	60 - 140	96
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	82
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	121
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	88
LB121151.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	111
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	112
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	116
		Dieldrin	mg/kg	0.05	0.21	0.2	60 - 140	103
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	112
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	117
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	90

PAH (Polynuclear A	(Polynuclear Aromatic Hydrocarbons) in Soil							
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121150.002		Naphthalene	mg/kg	0.1	4.4	4	60 - 140	111
		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	110
		Acenaphthene	mg/kg	0.1	4.5	4	60 - 140	112
		Phenanthrene	mg/kg	0.1	4.4	4	60 - 140	109
		Anthracene	mg/kg	0.1	4.5	4	60 - 140	112
		Fluoranthene	mg/kg	0.1	4.4	4	60 - 140	111
		Pyrene	mg/kg	0.1	4.3	4	60 - 140	108
		Benzo(a)pyrene	mg/kg	0.1	4.6	4	60 - 140	114
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
PCBs in Soll						N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121150.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	111
LB121151.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	99

pH in soil (1:5)					l. I	Nethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121107.003	pH	pH Units	-	7.4	7.415	98 - 102	100

### 31/3/2017



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable	Metals in Soil/Was	te Solids/Materials by ICPOES				Method:	ME-(AU)-[ENV	JAN040/AN3
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121246.002		Arsenic, As	mg/kg	3	59	50	80 - 120	118
		Cadmium, Cd	mg/kg	0.3	55	50	80 - 120	110
		Chromium, Cr	mg/kg	0.3	47	50	80 - 120	94
		Copper, Cu	mg/kg	0.5	53	50	80 - 120	107
		Lead, Pb	mg/kg	1	56	50	80 - 120	111
		Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
		Zinc, Zn	mg/kg	0.5	55	50	80 - 120	109
LB121247.002		Arsenic, As	mg/kg	3	51	50	80 - 120	102
		Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	102
		Chromium, Cr	mg/kg	0.3	51	50	80 - 120	101
		Copper, Cu	mg/kg	0.5	50	50	80 - 120	100
		Lead, Pb	mg/kg	1	51	50	80 - 120	102
		Nickel, Ni	mg/kg	0.5	51	50	80 - 120	102
		Zinc, Zn	mg/kg	0.5	51	50	80 - 120	103
RH (Total Recov	erable Hydrocarbo	ns) in Soil				I	Method: ME-(Al	J)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB121150.002		TRH C10-C14	mg/kg	20	44	40	60 - 140	110
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	108
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	88
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	44	40	60 - 140	110
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	100
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
/OC's in Soil						I	Method: ME-(Al	J)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB121106.002	Monocyclic	Benzene	mg/kg	0.1	1.8	2.9	60 - 140	63
	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	73
		Ethylbenzene	mg/kg	0.1	2.3	2.9	60 - 140	80
		m/p-xylene	mg/kg	0.2	4.8	5.8	60 - 140	83
		o-xylene	mg/kg	0.1	2.4	2.9	60 - 140	82
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	83
	-	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	91
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
/olatile Petroleum	Hydrocarbons in S						Method: ME-(Al	J)-[ENV]AN4
Sample Numbe	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB121106.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	86
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	77
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	83
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	91
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		do-toldene (Sunogate)						
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	95



### **MATRIX SPIKES**

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME							ENVJAN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163341.019	LB121175.004	Mercury	mg/L	0.0001	0.0070	<0.0001	0.008	89

#### Mercury in Soil

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163472.072	LB121210.004	Mercury	mg/kg	0.05	0.19	<0.05	0.2	78

### **OC Pesticides in Soil**

C Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
E163472.069	LB121150.027	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-
		Alpha BHC	mg/kg	0.1	<0.1	-	-
		Lindane	mg/kg	0.1	<0.1	-	-
		Heptachlor	mg/kg	0.1	<0.1	0.2	124
		Aldrin	mg/kg	0.1	<0.1	0.2	119
		Beta BHC	mg/kg	0.1	<0.1	-	-
		Delta BHC	mg/kg	0.1	<0.1	0.2	123
		Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
		o,p'-DDE	mg/kg	0.1	<0.1	-	-
		Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
		Gamma Chlordane	mg/kg	0.1	<0.1	-	-
		Alpha Chlordane	mg/kg	0.1	<0.1	-	-
		trans-Nonachlor	mg/kg	0.1	<0.1	-	-
		p,p'-DDE	mg/kg	0.1	<0.1	-	-
		Dieldrin	mg/kg	0.05	<0.05	0.2	111
		Endrin	mg/kg	0.2	<0.2	0.2	109
		o,p'-DDD	mg/kg	0.1	<0.1	-	-
		o,p'-DDT	mg/kg	0.1	<0.1	-	-
		Beta Endosulfan	mg/kg	0.2	<0.2	-	-
		p,p'-DDD	mg/kg	0.1	<0.1	-	-
		p,p'-DDT	mg/kg	0.1	<0.1	0.2	125
		Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
		Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
		Methoxychlor	mg/kg	0.1	<0.1	-	-
		Endrin Ketone	mg/kg	0.1	<0.1	-	-
		Isodrin	mg/kg	0.1	<0.1	-	-
		Mirex	mg/kg	0.1	<0.1	-	-
	Surrog	gates Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	-	101
AH (Polynuclea	ar Aromatic Hydrocarbons) in S	Soil				N	lethod: ME-(AU)·
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE163472.017	LB121150.026	Naphthalene	mg/kg	0.1	<0.1	4	107
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	<0.1	4	105
		Acenaphthene	mg/kg	0.1	<0.1	4	105
		Fluorene	mg/kg	0.1	<0.1	-	-

Phenanthrene

Anthracene

Pyrene

Chrysene

Fluoranthene

Benzo(a)anthracene

Benzo(b&j)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenzo(ah)anthracene

Carcinogenic PAHs, BaP TEQ <LOR=0

Benzo(ghi)perylene

Benzo(k)fluoranthene

Benzo(a)pyrene

105

107

108

120

-

-

105

-

-

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

mg/kg

TEQ

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.2

4

4

4

4

-

4

-

-



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

### Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	8
SE163472.017									
E163472.017	LB121150.026		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>-</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>-</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-	-
			Total PAH (18)	mg/kg	0.8	<0.8	-	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	-	94	-
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	92	_
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	94	
otal Recoverabl	e Metals in Soil/Waste	Solids/Material	s by ICPOES				Method: M	IE-(AU)-[ENV]	AN040/AN32
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE163472.076	LB121247.004		Arsenic, As	mg/kg	3	45	4	50	81
			Cadmium, Cd	mg/kg	0.3	42	<0.3	50	84
			Chromium, Cr	mg/kg	0.3	51	9.4	50	83
			Copper, Cu	mg/kg	0.5	50	6.8	50	86
			Lead, Pb	mg/kg	1	54	15	50	77
			Nickel, Ni	mg/kg	0.5	49	4.5	50	90
			Zinc, Zn	mg/kg	0.5	69	24	50	90
SE163512.050	LB121246.004		Arsenic, As	mg/kg	3	61	10	50	100
			Cadmium, Cd	mg/kg	0.3	49	0.8	50	96
			Chromium, Cr	mg/kg	0.3	69	25	50	87
			Copper, Cu	mg/kg	0.5	110	58	50	107
			Lead, Pb	mg/kg	1	90	35	50	109
			Nickel, Ni	mg/kg	0.5	60	15	50	92
			Zinc, Zn	mg/kg	0.5	460	370	50	180 (9)
	verable Hvdrocarbons								

								· · · · · · · · · · · · · · · · · · ·
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE163472.017	LB121150.026		TRH C10-C14	mg/kg	20	<20	40	90
			TRH C15-C28	mg/kg	45	<45	40	88
			TRH C29-C36	mg/kg	45	<45	40	93
			TRH C37-C40	mg/kg	100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	-	-
			TRH C10-C40 Total	mg/kg	210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	93
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	95
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-

VOC's in Soil							Mett	nod: ME-(Al	J)-[ENV]AN433
QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163472.001	LB121106.004	Monocyclic	Benzene	mg/kg	0.1	2.2	<0.1	2.9	76
		Aromatic	Toluene	mg/kg	0.1	1.9	<0.1	2.9	62
			Ethylbenzene	mg/kg	0.1	2.1	<0.1	2.9	70
			m/p-xylene	mg/kg	0.2	4.2	<0.2	5.8	72
			o-xylene	mg/kg	0.1	2.2	<0.1	2.9	73
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.5	4.5	-	70
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	-	82
			d8-toluene (Surrogate)	mg/kg	-	3.6	3.5	-	72
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.8	-	94
		Totals	Total Xylenes*	mg/kg	0.3	6.4	<0.3	-	-
			Total BTEX	mg/kg	0.6	13	<0.6	-	-
Volatile Petroleu	m Hydrocarbons in S	Soil					Meth	nod: ME-(Al	J)-[ENV]AN433
QC Sample	Sample Number	7	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163472.001	LB121106.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	82
			TRH C6-C9	mg/kg	20	<20	<20	23.2	73
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.5	4.5	-	70
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	-	82
			d8-toluene (Surrogate)	mg/kg	-	3.6	3.5	-	72

mg/kg

mg/kg

mg/kg

-

0.1

25

4.7

2.2

<25

4.8

<0.1

<25

7.25

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

Benzene (F0)

VPH F

Bands

94

109



The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



#### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at <a href="http://www.sgs.com/en/terms-and-conditions">http://www.sgs.com/en/terms-and-conditions</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

2

GEOTECHNIQUE PTY I TD



# Laboratory Test Request / Unain of Custody Record

emko l ENRIT	Place H NSW 275	0		F	second a state of the line of	O Box 880 NSW 2751	Fax: (02) 4722	2 6161					Page	1	of	7
0: H:	SGS ENV UNIT 16 33 MADD	IRONMENTAL S OX STREET DRIA NSW 201			FAX:	02 8594 049	٩	Sampling B Project Mar		SS		Job No: Project: Location: A	13793/5			
	02 0004 0	400			1700.	02 000 1 0 10		i i oje et indi	agen.							
ATTN:	MS EMILY	And the second sec														
		Sampling deta	ails	-	Samp	le type		Ros	ulte rom	uired by	Stan	dard Tur	naround Ti	me		
1	Location	Depth (m)	Date	Time	Soil	Material		Res	uns requ	uneu by	. Stan			me		
×							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	втех		KEEP SAMPLE
1	TP1	0-0.15	20/03/2017		SG/SP			1	~			~	~			YES
	TP1	0.3-0.4	20/03/2017		SG							I			1	YES
2	TP2	0-0.15	20/03/2017		SG/SP	(h)		1.1.1					1			YES
-	TP2	0.3-0.4	20/03/2017	* *	SG			1		1		1		·		YES
3	TP3	0-0.15	20/03/2017		SG/SP-							1.1.1	~		1	YES
4	TP3	0.5-0.65	20/03/2017		SG/SP-					1.1.1			~			YES
5	TP4	0-0.15	20/03/2017	÷.	SG					6		~			1	YES
6	TP5	0-0.15	20/03/2017		SG	1.1.1		-		1			,		1	YES
1 +	TP6	0-0.15	20/03/2017	H I	SG/SP			~	~	A		~	~		10.000	YES
-	TP6	0.4-0.5	20/03/2017		SG			21. T					,		1	YES
8	TP7	0-0.15	20/03/2017		SG/SP								~			YES
-	TP7	0.25-0.35	20/03/2017	1. 1. 1.	SG			add in the second		1			/			YES
9	TP8	0-0.15	20/03/2017	*	SG/SP			_			-	.X	v		-	YES
	TP8	0.35-0.45	20/03/2017		SG											YES
			Reli	inquished			Date	-	Mama		-	Receive		-	Date	
	Name JOHN X			Signa JX			23/03/2017	(	Name	5	-	Signatu	ne	21/3/17	Dale	
egend:				JA				1 2	Proved and and and and and and and and and an					- fai		
VG		nple, glass bottle			SG	Soil sample			SP	Soil sample		ag)		* Purge & Trap		
VP	Water san	nple, plastic bott	le		FCP	Fibro Cemer	nt Piece (plastic bag)		~	Test require	ed					

÷

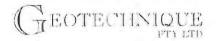


Lemko Place					O Box 880	Tel: (02) 4722 Fax: (02) 4722						Page	2	of	7
UNIT 16 33 MADD	50 VIRONMENTAL S DOX STREET DRIA NSW 2013		F	PENRITH	NSW 2751		Sampling B	y:	SS		Job No: Project:	Page 13793/5	2	01	
PH: 02 8594 (	0400			FAX:	02 8594 049	9	Project Mar	ager:	JX		Location: /	Airds			
ATTN. MS LIME	Sampling deta	ils		Sam	ole type				23	123.5	1.1.1.1				
Location	Depth (m)	Date	Time	Soil	Material		Res	ults req	uired by	: Stan	dard Tur	naround Ti	me		
						Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX		KEEP SAMPLE
IC TP9	0-0.15	20/03/2017		SG							1			14. i	YES
11 TP10	0-0.15	20/03/2017	-	SG/SP			1	~				~		S-57.	YES
12 TP10	0.5-0.65	20/03/2017		SG/SP								~			YES
TP10	0.95-1.05	20/03/2017	- (÷	SG										12.7	YES
13 TP11	0-0.15	20/03/2017	- +	SG/SP								~			YES
TP11	0.5-0.65	20/03/2017	-	SG					-						YES
14 TP12	0-0.15	20/03/2017	-	SG/SP								~		1 - 0	YES
15 TP12	0.5-0.65	20/03/2017	÷	SG/SP						1.2.1		~		1.00	YES
TP12	0.75-0.85	20/03/2017	1.1.1	SG										1	YES
16 TP13	0-0.15	20/03/2017	-	SG					1					1	YES
17 TP15	0-0.1	20/03/2017		SG/SP	21		~	1			1	~		1	YES
) & TP16	0-0.15	20/03/2017		SG						1.1.1	· · · · · · · · · · · · · · · · · · ·			1	YES
1 0 TP17	0-0.15	20/03/2017	-	SG/SP							1	~		i = -i	YES
TP17	0.55-0.65	20/03/2017	1.1	SG										1	YES
	10	Reli	nquished							1	Receive				
Name			Signa			Date		Name		-	Signatu		0,1211	2 Date	70.0
JOHN 3	XU		JX			23/03/2017	AC	)				0	L'US II	Te	1pin
	mple, glass bottle mple, plastic bottl			SG FCP	Soil sample ( Fibro Cemer	(glass jar) ht Piece (plastic bag)		SP ✓	Soil sample Test require		ag)		* Purge & Trap		v



emko Place ENRITH NSW 275		La Carlo	F		P O Box 880 NSW 2751	Fax: (02) 4722						Page	3	of	7
UNIT 16 33 MADD	IRONMENTAL S OX STREET ORIA NSW 201 400			FAX:	02 8594 049	9	Sampling B		SS		Job No: Project: Location: A	13793/5 Airds			
TTN: MS EMIL															
ino cane	Sampling deta	ails		Sam	ole type		-				22	9 1 5 5 5 Ee.	1.1.		
Location	Depth (m)	Date	Time	Soil	Material		Res	ults requ	uired by	Stan	dard Tur	naround Tir	ne		
						Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX		KEEP SAMPL
10 TP18	0-0.15	20/03/2017	-	SG							~				YES
2 TP19	0-0.15	20/03/2017		SG			140		1		~			1	YES
TP19	0.3-0.4	20/03/2017	- H	SG					F	T					YES
11 TP20	0-0.15	20/03/2017	e e	SG							~				YES
23 TP21	0-0.15	20/03/2017		SG							~			1	YES
24 TP22	0-0.15	20/03/2017	-	SG/SP								~			YES
TP22	0.45-0.55	20/03/2017	- A	SG										-	YES
25 TP23	0-0.15	21/03/2017		SG/SP			~	~			· · · · · · · · · · · · · · · · · · ·	~			YES
76 TP23	0.3-0.4	21/03/2017		SG/SP			-	1.1.1.1.1				~			YES
21 TP24	0-0.1	21/03/2017	÷.	SG/SP			2					~			YES
25 TP27	0-0.1	21/03/2017		SG/SP	1				1			~		· · · · · ·	YES
29 TP28	0-0.15	21/03/2017	4	SG	·		3	A	1				10000		YES
30 TP29	0-0.15	21/03/2017	$= - L^{*} - 1$	SG	1						~				YES
31 TP30	0-0.15	21/03/2017	-	SG									3.5		YES
Nindaria		Reli	nquished			Dete	-	News			Received			Det	_
Name JOHN X			Signat JX			Date 23/03/2017	-	Name			Signatu	ne k	211	Date	2m
egend:	.0		JA			23/03/2017		EM		-	e		C1/	5/1/	000
/G Water san	nple, glass bottle	54 C		SG	Soil sample (	(glass jar)		SP	Soil sample	(plastic ba	g)		Purge & Trap		




Lemko F PENRIT	Place H NSW 275	0		F		O Box 880 NSW 2751	Tel: (02) 4722 Fax: (02) 4722	2 6161					Page	4	of	7
то: РН:	UNIT 16 33 MADD	IRONMENTAL S OX STREET DRIA NSW 201 400		6	FAX:	02 8594 0499	9	Sampling B Project Mar		SS JX		Job No: Project: Location: A	13793/5 Airds			
ATTN:	MS EMIL				-	1. A		1	-		-					
_		Sampling deta	ails		Samp	ole type		Res	ults real	uired by:	Stan	dard Tur	naround Tir	ne		
1	Location	Depth (m)	Date	Time	Soil	Material										
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX		KEEP SAMPLE
32	TP31	0-0.15	21/03/2017	-	SG							1				YES
33	TP32	0-0.15	21/03/2017		SG				2		·					YES
34	TP33	0-0.15	21/03/2017		SG/SP			~	~	1			$\checkmark$			YES
27	TP33	0.2-0.3	21/03/2017	(	SG			1			1				1	YES
25	TP34	0-0.15	21/03/2017	1	SG			1		1		~	1		1	YES
36	TP35	0-0.15	21/03/2017	1.1.4	SG					· · · · · · · · · · · · · · · · · · ·						YES
37	TP36	0-0.15	21/03/2017	1.7	SG							11			1	YES
38	TP37	0-0.15	21/03/2017	•	SG					1.1.1		1				YES
39	TP38	0-0.15	21/03/2017	-	SG			(				1				YES
40	TP39	0-0.1	21/03/2017		SG/SP			~	~			~	~			YES
41	TP41	0-0.15	21/03/2017		SG						During and	0.11.1				YES
42	TP42	0-0.15	21/03/2017		SG			1			-		-			YES
42	TP43	0-0.15	21/03/2017	1.1	SG						-	1			-	YES
44	TP44	0-0.15	21/03/2017	i e	SG/SP								~		-	YES
	1.		Reli	inquished	by			-	-			Receive			Data	
	Name			Signa			Date		Name		-	Signatu	ire	5.13	Date	Zon
	JOHN	XU		JX			23/03/2017	1 12	10		-			-4	2117	you
Legend: WG WP	Water sar	mple, glass bottle mple, plastic bott			SG FCP	Soil sample ( Fibro Cemen	glass jar) t Piece (plastic bag)		SP ✓	Soil sample Test require	a construction	ag)		* Purge & Trap		



emko I	Place H NSW 275	0		F		O Box 880 NSW 2751	Tel: (02) 4722 Fax: (02) 4722						Page	5	of	7
го: РН:	SGS ENV UNIT 16 33 MADD	IRONMENTAL S OX STREET DRIA NSW 201			FAX:	02 8594 049	9	Sampling B Project Mar		SS JX		Job No: Project: Location: A	13793/5 Nirds			
ATTN:	MS EMIL	2 CLOROD								_						
		Sampling deta	ails		Samp	ole type		Res	ulte real	uired by	Stan	dard Tur	naround Tir	ne		
	Location	Depth (m)	Date	Time	Soil	Material		Rest	uno requ	uneu by	. otan	uara rui	nurouna m	iic.		
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX		KEEP SAMPLE
	TP44	0.25-0.35	21/03/2017	-	SG		,, .	111-11-11-1			1.0		· · · · · · · · · · · · · · · · · · ·		1.2.1.1	YES
45	TP45	0-0.15	21/03/2017		SG				1			~				YES
46	TP46	0-0.15	21/03/2017	-	SG/SP			1	-	_	1		~			YES
10	TP46	0.25-0.35	21/03/2017	10.2	SG			1							1.55	YES
47	TP47	0-0.15	21/03/2017	-	SG			1			1					YES
uk	TP48	0-0.15	21/03/2017	-	SG											YES
49	TP49	0-0.15	21/03/2017	-	SG/SP			~	~		1.0	~	~			YES
41	TP49	0.25-0.35	21/03/2017	-	SG											YES
50	TP52	0-0.15	21/03/2017	-	SG/SP			1			1		~		1	YES
51	TP52	0.4-0.5	21/03/2017		SG/SP			1	~			~	~		in and	YES
32	X1		20/03/2017		SG			~	~						1	YES
53	X2		20/03/2017	-	SG							2				YES
54	X3	-	20/03/2017		SG						d					YES
55	X4		21/03/2017		SG			1								YES
22				nquished	by							Receive				
	Name	9		Signa	ture		Date		Name			Signatu	ire		Date	620
	JOHN	XU		JX	(		23/03/2017	1	40			10		213	117	elp
Legend WG WP	Water sa	nple, glass bottle nple, plastic bott			SG FCP	Soil sample	(glass jar) nt Piece (plastic bag)		SP ✓	Soil sample Test require		ig)		ا Purge & Trap		U



Project Manager: Project Manager: Results req TPH* & PAH BTEX	SS JX JX OCP		Project: Location: A		me BTEX	KEEP SAMPL YES YES
TPH* & PAH				ASBESTOS		SAMPL YES YES
TPH* & PAH				ASBESTOS		SAMPL YES YES
& PAH	OCP	РСВ	pH, CEC		BTEX	SAMPL YES YES
						YES
						and the second sec
						YES
		1.0		1.000		YES
	12				~	YES
					~	YES
						_
					-	
			Signatu	ure		Date
AO				1	415117	Zpu
	Name SP	SP Soil sample	SP Soil sample (plastic ba	Name     Signat       A     A       SP     Soil sample (plastic bag)	SP Soil sample (plastic bag)	Name Signature Zi 3[17



### SGS ENVIRONMENTAL SERVICES

Sampling Date:	20 & 21/3/2017	Job No:	13793/5
Sampled by:	SS		
Project Manager:	JX	Location:	Airds
Results Required by:	Standard Turnaround	d Time	

Composite	Sub-Samples	A	nalyte	
Sample		Metals	OCP	PCB
C601	X TP1 (0-0.15m) TP2 (0-0.15m) TP8 (0-0.15m)	~	~	~
C602	TP3 (0-0.15m) TP7 (0-0.15m) TP10 (0-0.15m)	~	*	~
C603	TP4 (0-0.15m) TP5 (0-0.15m) TP13 (0-0.15m)	~	÷	
C604	7 TP6 (0-0.15m) + TP11(0-0.15m) + TP12 (0-0.15m)	~	*	*
C605	TP9 (0-0.15m) + TP19 (0-0.15m) + TP21 (0-0.15m)	~		
C606	TP15 (0-0.15m) TP22 (0-0.15m) 7P24 (0-0.1m)	~	~	~
C607	TP16 (0-0.15m) 70P18 (0-0.15m) 71TP30 (0-0.15m)	~		
C608	19 TP17 (0-0.15m) 7 P23 (0-0.15m) 2 P27 (0-0.15m)	~	~	~
C609 🤺	TP20 (0-0.15m) 7 TP31 (0-0.15m) 7 TP32 (0-0.15m)	~	~	-
C610	TP28 (0-0.15m) TP38 (0-0.15m) TP42 (0-0.15m)	~	~	-
C611 🙀	TP29 (0-0.15n 3 P36 (0-0.15n P37 (0-0.15m)	~	~	-
C612	TP33 (0-0.15m) + TP34 (0-0.15m) + TP46 (0-0.15m)	~	~	~
C613 🕺	TP35 (0-0.15m + P44 (0-0.15m) + P49 (0-0.15m)	~	~	~
C614 🕺	TP39 (0-0.1m) + TP41 (0-0.15m) 57P52 (0-0.15m)	~	~	~
C615 🕺	TP45 (0-0.15m) + P47 (0-0.15m) + P48 (0-0.15m)	~	-	-
C616	TP23 (0.3-0.4m) + P43 (0-0.15m) 57P52 (0.4-0.5m)	~	-	~
Duplicate CD1	X1 + X2 + X3 × 52 + 53 +54	~	~	~
Duplicate CD2	X4 + X5 + X6 × 55 + 56 + 57	~	-	-

SM

24317

Test required

Metals include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) OCP = Organochlorine Pesticides PCB: Polychlorinated Biphenyls

JX 23/3/2017 (JOHN XU) Geotechnique Pty Ltd



CLIENT DETAIL	S	LABORATORY DETA	MLS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds	Samples Received	Tue 21/3/2017
Order Number	(Not specified)	Report Due	Thu 30/3/2017
Samples	79	SGS Reference	SE163472

_ SUBMISSION DETAILS

This is to confirm that 79 samples were received on Tuesday 21/3/2017. Results are expected to be ready by Thursday 30/3/2017. Please quote SGS reference SE163472 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 23/3/17@12:27pm Yes 16.1°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 58 Soil, 2 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at <a href="http://www.sgs.com/en/terms-and-conditions">http://www.sgs.com/en/terms-and-conditions</a> as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



#### CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

	Y OF ANALYSIS						
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP1 0-0.15	13	26	1	10	12	8
005	TP4 0-0.15	13	-	1	-	-	-
007	TP6 0-0.15	13	26	1	10	12	8
010	TP9 0-0.15	13	-	1	-	-	-
011	TP10 0-0.15	-	26	-	10	12	8
017	TP15 0-0.1	13	26	1	10	12	8
020	TP18 0-0.15	13	-	1	-	-	-
021	TP19 0-0.15	13	-	1	-	-	-
022	TP20 0-0.15	13	-	1	-	-	-
023	TP21 0-0.15	13	-	1	-	-	-

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

29/03/2017



#### CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

SUMMARY	OF ANALYSIS		1		1		1
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	TP23 0-0.15	-	26	-	10	12	8
030	TP29 0-0.15	13	-	1	-	-	-
034	TP33 0-0.15	-	26	-	10	12	8
035	TP34 0-0.15	13	-	1	-	-	-
040	TP39 0-0.1	13	26	1	10	12	8
045	TP45 0-0.15	13	-	1	-	-	-

_ CONTINUED OVERLEAF



#### CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 13793-5 Airds

No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
049	TP49 0-0.15	13	-	26	-	1	10	12	8
051	TP52 0.4-0.5	13	-	26	-	1	10	12	8
052	X1	-	-	26	-	-	10	12	8
059	Tripspike TS1	-	-	-	-	-	-	12	-
060	Tripspike TS2	-	-	-	-	-	-	12	-
061	C601	-	28	-	11	-	-	-	-
062	C602	-	28	-	11	-	-	-	-
064	C604	-	28	-	11	-	-	-	-
066	C606	-	28	-	11	-	-	-	-
068	C608	-	28	-	11	-	-	-	-
069	C609	-	28	-	-	-	-	-	-
070	C610	-	28	-	-	-	-	-	-
071	C611	-	28	-	-	-	-	-	-
072	C612	-	28	_	11	_	-	-	-

_ CONTINUED OVERLEAF



CLIENT DETAILS .

## SAMPLE RECEIPT ADVICE

#### 13793-5 Airds Client Geotechnique Project SUMMARY OF ANALYSIS OC Pesticides in Soil PCBs in Soil No. Sample ID 073 28 11 C613 074 C614 28 11 28 11 076 C616 28 11 077 Duplicate CD1

CONTINUED OVERLEAF



CLIENT DETAILS . Client Geotechnique Project 13793-5 Airds SUMMARY OF ANALYSIS Gravimetric Determination of Asbestos in Soil Moisture Content Sample ID No. 9 1 001 TP1 0-0.15 9 002 TP2 0-0.15 -9 -003 TP3 0-0.15 9 004 TP3 0.5-0.65 -005 TP4 0-0.15 -1 007 TP6 0-0.15 9 1 9 008 TP7 0-0.15 -9 009 TP8 0-0.15 -1 010 TP9 0-0.15 -9 1 011 TP10 0-0.15 012 TP10 0.5-0.65 9 -013 TP11 0-0.15 9 -9 014 TP12 0-0.15 -015 TP12 0.5-0.65 9 -017 9 1 TP15 0-0.1 019 TP17 0-0.15 9 -1 020 TP18 0-0.15 -021 TP19 0-0.15 -1 1 022 TP20 0-0.15 -1 023 TP21 0-0.15 -9 024 -TP22 0-0 15

_ CONTINUED OVERLEAF



CLIENT DETAILS .

046

TP46 0-0.15

## SAMPLE RECEIPT ADVICE

Client Geotechnique Project 13793-5 Airds SUMMARY OF ANALYSIS Gravimetric Determination of Asbestos in Soil Moisture Content Sample ID No. 9 025 1 TP23 0-0.15 9 026 TP23 0.3-0.4 -9 -027 TP24 0-0.1 9 028 TP27 0-0.1 -030 TP29 0-0.15 -1 034 TP33 0-0.15 9 1 1 035 TP34 0-0.15 -9 1 040 TP39 0-0.1 9 044 -TP44 0-0.15 1 045 TP45 0-0.15 -

9

-

_ CONTINUED OVERLEAF



#### CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

No.	Sample ID	Gravimetric Determination of Asbestos in Soil	Mercury (dissolved) in Water	Mercury in Soil	Metals in Water (Dissolved) by ICPOES	Moisture Content	Total Recoverable Metals
049	TP49 0-0.15	9	-	-	-	1	-
050	TP52 0-0.15	9	-	-	-	-	-
051	TP52 0.4-0.5	9	-	-	-	1	-
052	X1	-	-	-	-	1	-
058	Rinsate R1	-	1	-	7	-	-
061	C601	-	-	1	-	1	7
062	C602	-	-	1	-	1	7
063	C603	-	-	1	-	1	7
064	C604	-	-	1	-	1	7
065	C605	-	-	1	-	1	7
066	C606	-	-	1	-	1	7
067	C607	-	-	1	-	1	7
068	C608	-	-	1	-	1	7
069	C609	-	-	1	-	1	7
070	C610	-	-	1	-	1	7
071	C611	-	-	1	-	1	7
072	C612	-	-	1	-	1	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .



#### CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

- SUMMARY	OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Mercury in Soil	Metals in Water (Dissolved) by ICPOES	Moisture Content	Total Recoverable Metals in Soil/Waste
073	C613	-	1	-	1	7
074	C614	-	1	-	1	7
075	C615	-	1	-	1	7
076	C616	-	1	-	1	7
077	Duplicate CD1	-	1	-	1	7
078	Duplicate CD2	-	1	-	1	7
079	Rinsate R2	1	-	7	-	-



# **ANALYTICAL REPORT**



CLIENT DETAILS			
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163472A R0
Order Number	(Not specified)	Date Received	4/4/2017
Samples	79	Date Reported	10/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



# **ANALYTICAL RESULTS**

### SE163472A R0

### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 7/4/2017

			TP3 0-0.15	TP7 0-0.15	TP10 0-0.15	TP17 0-0.15	TP23 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/3/2017			20/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472A.003	SE163472A.008	SE163472A.011	SE163472A.019	SE163472A.025
Nickel, Ni	mg/kg	0.5	5.3	14	6.6	12	8.0

			TP27 0-0.1	TP28 0-0.15	TP38 0-0.15	TP42 0-0.15
			SOIL	SOIL	SOIL	SOIL
						-
			21/3/2017	21/3/2017	21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472A.028	SE163472A.029	SE163472A.039	SE163472A.042
Nickel, Ni	mg/kg	0.5	5.9	8.3	8.9	12



# ANALYTICAL RESULTS

### SE163472A R0

### Moisture Content [AN002] Tested: 5/4/2017

			TP3 0-0.15	TP7 0-0.15	TP17 0-0.15	TP27 0-0.1	TP28 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/3/2017			21/3/2017	21/3/2017
PARAMETER	UOM	LOR	SE163472A.003	SE163472A.008	SE163472A.019	SE163472A.028	SE163472A.029
% Moisture	%w/w	0.5	15	21	21	18	19

			TP38 0-0.15	TP42 0-0.15
			SOIL	SOIL
			- 21/3/2017	- 21/3/2017
PARAMETER	UOM	LOR	SE163472A.039	SE163472A.042
% Moisture	%w/w	0.5	14	20



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

#### FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



# STATEMENT OF QA/QC PERFORMANCE

Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163472A R0
Order Number	(Not specified)	Date Received	04 Apr 2017
Samples	79	Date Reported	10 Apr 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

Moisture Content

7 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	9 Soil	
Date documentation received	4/4/17@3:49pm	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	16.1°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			
·				

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499



# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content							Method: I	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP3 0-0.15	SE163472A.003	LB121939	20 Mar 2017	04 Apr 2017	03 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
TP7 0-0.15	SE163472A.008	LB121939	20 Mar 2017	04 Apr 2017	03 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
TP17 0-0.15	SE163472A.019	LB121939	20 Mar 2017	04 Apr 2017	03 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
TP27 0-0.1	SE163472A.028	LB121939	21 Mar 2017	04 Apr 2017	04 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
TP28 0-0.15	SE163472A.029	LB121939	21 Mar 2017	04 Apr 2017	04 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
TP38 0-0.15	SE163472A.039	LB121939	21 Mar 2017	04 Apr 2017	04 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
TP42 0-0.15	SE163472A.042	LB121939	21 Mar 2017	04 Apr 2017	04 Apr 2017	05 Apr 2017†	10 Apr 2017	10 Apr 2017
Total Recoverable Metals i	in Soil/Waste Solids/Materia	als by ICPOES					Method: ME-(AU	)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP3 0-0.15	SE163472A.003	LB121950	20 Mar 2017	04 Apr 2017	16 Sep 2017	07 Apr 2017	16 Sep 2017	10 Apr 2017
TP7 0-0.15	SE163472A.008	LB121950	20 Mar 2017	04 Apr 2017	16 Sep 2017	07 Apr 2017	16 Sep 2017	10 Apr 2017
TP10 0-0.15	SE163472A.011	LB121950	20 Mar 2017	04 Apr 2017	16 Sep 2017	07 Apr 2017	16 Sep 2017	10 Apr 2017
TP17 0-0.15	SE163472A.019	LB121950	20 Mar 2017	04 Apr 2017	16 Sep 2017	07 Apr 2017	16 Sep 2017	10 Apr 2017
TP23 0-0.15	SE163472A.025	LB121950	21 Mar 2017	04 Apr 2017	17 Sep 2017	07 Apr 2017	17 Sep 2017	10 Apr 2017
TP27 0-0.1					17.0 00.17	07 4== 2017	17 Sep 2017	10 Apr 2017
11 21 0 0.1	SE163472A.028	LB121950	21 Mar 2017	04 Apr 2017	17 Sep 2017	07 Apr 2017	17 Sep 2017	10 Apr 2017
TP28 0-0.15	SE163472A.028 SE163472A.029	LB121950 LB121950	21 Mar 2017 21 Mar 2017	04 Apr 2017 04 Apr 2017	17 Sep 2017 17 Sep 2017	07 Apr 2017 07 Apr 2017	17 Sep 2017	10 Apr 2017
				•				



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



# **METHOD BLANKS**

Method: ME-(AU)-[ENV]AN040/AN320

LOR Result

<0.5

0.5

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soll/Waste Solids/Materials by	ICPOES	
Sample Number	Parameter	Units
LB121950.001	Nickel, Ni	mg/kg



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472A.008	LB121939.022	% Moisture	%w/w	0.5	21	19	35	12
SE163788.001	LB121939.044	% Moisture	%w/w	0.5	21.380846325	21.546261089	\$ 35	1
SE163841.002	LB121939.011	% Moisture	%w/w	0.5	28.748451053	28.085642317	3 34	2
SE163914.002	LB121939.033	% Moisture	%w/w	0.5	15.621301775	17.031070195	E 36	9
Total Recoverable I	vetals in Soil/Waste Soli	ds/Materials by ICPOES				Method: ME	-(AU)-[ENV]AI	1040/AN320
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163472A.042	LB121950.014	Nickel, Ni	mg/kg	0.5	12	11	34	8
SE163914.009	LB121950.024	Nickel, Ni	mg/kg	0.5	8.2026928600	010.2473762920	35	22



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in S	Soil/Waste Solids/Materials by ICPOES				Method	ME-(AU)-[EN	VJAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121950.002	Nickel, Ni	mg/kg	0.5	48	50	80 - 120	96



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable	e Metals in Soil/Waste Solids	Materials by ICPOES				Method: ME	-(AU)-[ENV	JAN040/AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163904.001	LB121950.004	Nickel, Ni	mg/kg	0.5	49	4.89859375	50	87



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



# GEOTECHNIQUE PTY I TD

# Laboratory Test Request / Chain of Custody Record

	Place ITH NSW 275	0		F	and the second of	P O Box 880 NSW 2751	Tel: (02) 4 Fax: (02) 4			Page	1 01	f 1
TO:	UNIT 16 33 MADD	RONMENTAL : DX STREET DRIA NSW 201			FAX:	02 8594 0499		Sampling By: Project Manager:	SS	Job No: 13793/5 Project: Location: Airds		
PH:					FAA.	02 0394 0499		Froject Manager.	JA	Location. Ands		
ATTN	: MS EMILY	Sampling deta	ails		Sam	ple type	-					
	Location	Depth (m)	Date	Time	Soil	Material	Re	sults required by:		0/04/2017 (Standard Turnaro ef. SE163472	ound Time)	
							Ni					KEEP SAMPLE
3	TP3	0-0.15	20/03/2017	-	SG		~					YES
5 8	TP7	0-0.15	20/03/2017	-	SG		~					YES
11	TP10	0-0.15	20/03/2017	1 - <u>1</u>	SG		~					YES
19	TP17	0-0.15	20/03/2017		SG		~			SGS EHS Alexandria Laboratory		YES
15 18	TP23	0-0.15	21/03/2017		SG		~					YES
28	TP27	0-0.15	21/03/2017	A	SG		~					YES
29	TP28	0-0.15	21/03/2017	-	SG		~					YES
39	TP38	0-0.15	21/03/2017		SG		~			054004704 000		YES
42	TP42	0-0.15	21/03/2017	-	SG		<b>v</b>			SE163472A COC Received: 04 – Apr – 2017		YES
						-						
			Ral	nquished I			-			Received by		
	Name		Nei	Signat			Date	Nam	e	Signature	Dat	e
0	JOHN X			JX			4/04/2017		isno	6 Ch		
Legen WG WP	Water san	nple, glass bottle nple, plastic bott			SG FCP	Soil sample (gla Fibro Cement P	ss jar) ece (plastic bag)	SP ✓	Soil sample ( Test required		ge & Trap	



# SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	AILS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	Samples Received	Tue 4/4/2017
Order Number	(Not specified)	Report Due	Mon 10/4/2017
Samples	79	SGS Reference	SE163472A

_ SUBMISSION DETAILS

This is to confirm that 79 samples were received on Tuesday 4/4/2017. Results are expected to be ready by Monday 10/4/2017. Please quote SGS reference SE163472A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 4/4/17@3:49pm Yes 16.1°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 9 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

a t +61 2 8594 0400 a f +61 2 8594 0499

www.sgs.com.au



CLIENT DETAILS .

# SAMPLE RECEIPT ADVICE

### Client Geotechnique Project 13793-5 Airds Additional SUMMARY OF ANALYSIS Total Recoverable Metals in Soil/Waste Moisture Content No. Sample ID 1 003 1 TP3 0-0.15 1 1 008 TP7 0-0.15 1 011 -TP10 0-0.15 1 1 019 TP17 0-0.15

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



CLIENT DETAILS .

# SAMPLE RECEIPT ADVICE

### Client Geotechnique Project 13793-5 Airds Additional SUMMARY OF ANALYSIS Total Recoverable Metals in Soil/Waste Moisture Content No. Sample ID 1 025 TP23 0-0.15 -1 1 028 TP27 0-0.15 1 1 029 TP28 0-0.15 039 TP38 0-0.15 1 1 042 TP42 0-0.15 1 1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# **ANALYTICAL REPORT**



- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163472B R0
Order Number	(Not specified)	Date Received	6/4/2017
Samples	79	Date Reported	11/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Armln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



# **ANALYTICAL RESULTS**

### TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil [AN403] Tested: 10/4/2017

			TP39 0-0.1
			SOIL
			- 21/3/2017
PARAMETER	UOM	LOR	SE163472B.040
TRH C10-C14-Silica	mg/kg	20	<20
TRH C15-C28-Silica	mg/kg	45	350
TRH C29-C36-Silica	mg/kg	45	2200
TRH C37-C40-Silica	mg/kg	100	1000
TRH >C10-C16-Silica (F2)	mg/kg	25	<25
TRH >C16-C34-Silica (F3)	mg/kg	90	1300
TRH >C34-C40-Silica (F4)	mg/kg	120	2200
TRH C10-C36-Silica	mg/kg	110	2500



METHOD	METHODOLOGY SUMMARY
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B

### FOOTNOTES -

** In	ATA accreditation does not cover e performance of this service. dicative data, theoretical holding ne exceeded.	NVL IS	Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received.	UOM LOR ↑↓	Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.
-------	--------------------------------------------------------------------------------------------------------------------------	-----------	----------------------------------------------------------------------------------------------------------	------------------	----------------------------------------------------------------------------------

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



# STATEMENT OF QA/QC PERFORMANCE

_ CLIENT DETAILS		LABORATORY DETAIL	ILS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163472B R0
Order Number	(Not specified)	Date Received	06 Apr 2017
Samples	79	Date Reported	11 Apr 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil

1 item

SAMPLE	SUMMARY
--------	---------

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 6/4/17@2:11pm Yes 16.1°C Three Days

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 1 Soil COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400

Australia

www.sgs.com.au f +61 2 8594 0499



# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH Silica Gel (Total Recov	verable Hydrocarbons - Sil	ica Gel) in Soil					Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP39 0-0.1	SE163472B.040	LB121973	21 Mar 2017	06 Apr 2017	04 Apr 2017	10 Apr 2017†	20 May 2017	11 Apr 2017



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



# **METHOD BLANKS**

## SE163472B R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### TRH Silica Gel (Total Recoverable Hydrocarbons - Silica Gel) in Soil

Sample Number	Parameter	Units	LOR	Result
LB121973.001	TRH C10-C14-Silica	mg/kg	20	<20
	TRH C15-C28-Silica	mg/kg	45	<45
	TRH C29-C36-Silica	mg/kg	45	<45
	TRH C37-C40-Silica	mg/kg	100	<100
	TRH >C10-C16-Silica (F2)	mg/kg	25	<25
	TRH >C16-C34-Silica (F3)	mg/kg	90	<90
	TRH >C34-C40-Silica (F4)	mg/kg	120	<120

Method: ME-(AU)-[ENV]AN403



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original Duplicate Parameter Units LOR



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH Silica Gel (Total Recove	rable Hydrocarbons - Silica Gel) in Soil				N	Method: ME-(A	U)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121973.002	TRH C10-C14-Silica	mg/kg	20	40	40	70 - 130	100
	TRH C15-C28-Silica	mg/kg	45	<45	40	70 - 130	100
	TRH C29-C36-Silica	mg/kg	45	<45	40	70 - 130	78
	TRH >C10-C16-Silica (F2)	mg/kg	25	41	40	70 - 130	103
	TRH >C16-C34-Silica (F3)	mg/kg	90	<90	40	70 - 130	90
	TRH >C34-C40-Silica (F4)	mg/kg	120	<120	20	70 - 130	75



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.





# GEOTECHNIQUE PTY I TD

# Laboratory Test Request / Chain of Custody Record

Lemko PENRIT	Place TH NSW 2750	)		F		P O Box 880 NSW 2751	Tel: (02) 4722 Fax: (02) 472			Page	1	of 1
TO: PH: ATTN:	UNIT 16 33 MADDO				FAX:	02 8594 0499		Sampling By: Project Manager:	SS JX	Job No: 13793/5 Project: Location: Airds		
ATTN.		Sampling deta	ils		Sam	ple type			0.0252.00			
	Location	Depth (m)	Date	Time	Soil	Material	Res	sults required by		y 11/04/2017 (3 day Tur Ref. SE163472	maround Tim	ie)
							TPH F2 & F3 with silica gel clean-up				1	KEEP SAMPLE
210	TP39	0-0.1	21/03/2017	-	SG		1					YES
-									-			
-									-			
						1						
					( 							1
											-	
			10000						-			
									-			1
		1.10										
			Rel	inquished						Received by		Data
-	Name			Signat			Date 6/04/2017	Name	sho	Signature		Date
Legend WG WP	Water sam	ple, glass bottle ple, plastic bottl		JX	SG FCP	Soil sample (g		A ⊂ GΩ sp √	Soil sample Test require	(plastic bag)	* Purge & Trap	



# SAMPLE RECEIPT ADVICE

CLIENT DETAILS	S	LABORATORY DETA	ILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13793-5 Airds Additional	Samples Received	Thu 6/4/2017	
Order Number	(Not specified)	Report Due	Tue 11/4/2017	
Samples	79	SGS Reference	SE163472B	

_ SUBMISSION DETAILS

This is to confirm that 79 samples were received on Thursday 6/4/2017. Results are expected to be ready by Tuesday 11/4/2017. Please quote SGS reference SE163472B when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 6/4/17@2:11pm Yes 16.1°C Three Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 1 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



# SAMPLE RECEIPT ADVICE

# CLIENT DETAILS Client Geotechnique SUMMARY OF ANALYSIS Image: Project 13793-5 Airds Additional SUMMARY OF ANALYSIS Image: Project 13793-5 Airds Additional No. Sample ID 040 TP39 0-0.1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# **ANALYTICAL REPORT**



ontact	John Xu	Manager	Huong Crawford
lient	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
elephone	02 4722 2700	Telephone	+61 2 8594 0400
acsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163472C R0
Order Number	(Not specified)	Date Received	10/4/2017
Samples	79	Date Reported	12/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

Dong Liang Metals/Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



# ANALYTICAL RESULTS

### pH in soil (1:5) [AN101] Tested: 11/4/2017

			TP33 0-0.15
			SOIL
			- 21/3/2017
PARAMETER	UOM	LOR	SE163472C.034
рН	pH Units	-	5.9



# ANALYTICAL RESULTS

### Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 12/4/2017

PARAMETER	UOM	LOR	TP33 0-0.15 SOIL - 21/3/2017 SE163472C.034
Exchangeable Sodium, Na	mg/kg	2	34
Exchangeable Sodium, Na	meq/100g	0.01	0.15
Exchangeable Sodium Percentage*	%	0.1	1.6
Exchangeable Potassium, K	mg/kg	2	270
Exchangeable Potassium, K	meq/100g	0.01	0.69
Exchangeable Potassium Percentage*	%	0.1	7.6
Exchangeable Calcium, Ca	mg/kg	2	720
Exchangeable Calcium, Ca	meq/100g	0.01	3.6
Exchangeable Calcium Percentage*	%	0.1	39.5
Exchangeable Magnesium, Mg	mg/kg	2	570
Exchangeable Magnesium, Mg	meq/100g	0.02	4.7
Exchangeable Magnesium Percentage*	%	0.1	51.2
Cation Exchange Capacity	meq/100g	0.02	9.1



METHOD	METHODOLOGY SUMMARY
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below :
	ESP < 6%
	Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1

### FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



# STATEMENT OF QA/QC PERFORMANCE

_ CLIENT DETAILS		LABORATORY DETAIL	ILS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163472C R0
Order Number	(Not specified)	Date Received	10 Apr 2017
Samples	79	Date Reported	12 Apr 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

pH in soil (1:5)

1 item

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	1 Soil	
Date documentation received	10/4/17@4:37pm	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	16.1°C	Sufficient sample for analysis	Yes	
furnaround time requested	Next Day			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 Australia f +61 2

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

12/4/2017

SAMPLE SUMMARY

Member of the SGS Group



# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)							Method: ME-(AU)-[ENV]AN12			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
TP33 0-0.15	SE163472C.034	LB122187	21 Mar 2017	10 Apr 2017	18 Apr 2017	12 Apr 2017	18 Apr 2017	12 Apr 2017		
pH in soil (1:5)							Method: ME-(AU)-[ENV]AN10			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
TP33 0-0.15	SE163472C.034	LB122143	21 Mar 2017	10 Apr 2017	28 Mar 2017	11 Apr 2017†	12 Apr 2017	12 Apr 2017		



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



# **METHOD BLANKS**

# SE163472C R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Sample Number Parameter

Method: ME-(AU)-[ENV]AN122 Units LOR



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soli (1:5) Method: ME-(AU)-[ENV						(ENV]AN101		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163975.004	LB122143.014	pH	pH Units	-	4.743	4.781	32	1
SE164078.010	LB122143.025	pH	pH Units	-	9.025	9.019	31	0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and C	ation Exchange Capacity (CEC/ESP/SAR)				N	lethod: ME-(A	U)-[ENV]AN12
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122187.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	88
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	86
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	88
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	88
oH in soil (1:5)					N	/lethod: ME-(A	U)-[ENV]AN10
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122143.003	pH	pH Units	-	7.4	7.415	98 - 102	100



## **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



#### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.





# Laboratory Test Request / Chain of Custody Record

Lemko PENRI	Place TH NSW 275	0		P		P O Box 880 NSW 2751	Tel: (02) 47 Fax: (02) 47			×	Page	1	of	1
TO: PH:	UNIT 16 33 MADD ALEXAND 02 8594 04				FAX:	02 8594 0499		Sampling By: Project Manager:	SS JX	Job No: Project: Location:	13793/5 Airds			
ATTN:	MS EMILY	YIN Sampling deta	aile		Sam	ple type		-	02.2 A C.T					
	Location	Depth (m)	Date	Time	Soil	Material	Res	ults required by:		lay 12/04/2017 Ref. SE163472		naround T	ime)	
							pH & CEC							KEEP SAMPLE
34	TP33	0-0.15	21/03/2017		SG		~							YES
										SE1	HS Alexandria	COC		
			Rel	inquished I	by				_	Receive	d by			
	Name			Signat	ure		Date	Name		Signati	Ire	1, 1	Date	
	JOHN X	(U		JX			10/04/2017	A. Och	SUD		en.	104	17	
Legeno WG WP	Water san	nple, glass bottle nple, plastic bott			SG FCP	Soil sample (gl Fibro Cement F	ass jar) Piece (plastic bag)	y SP ✓	Soil sample Test require			* Purge & Trap		



## SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13793-5 Airds Additional	Samples Received	Mon 10/4/2017	
Order Number	(Not specified)	Report Due	Wed 12/4/2017	
Samples	79	SGS Reference	SE163472C	

_ SUBMISSION DETAILS

This is to confirm that 79 samples were received on Monday 10/4/2017. Results are expected to be ready by Wednesday 12/4/2017. Please quote SGS reference SE163472C when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 10/4/17@4:37pm Yes 16.1°C Next Day Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 1 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

0 www.sgs.com.au



## SAMPLE RECEIPT ADVICE

# CLIENT DETAILS Client Geotechnique Project 13793-5 Airds Additional

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



## **ANALYTICAL REPORT**



Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
acsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds	SGS Reference	SE163541 R0
Order Number	(Not specified)	Date Received	23/3/2017
Samples	57	Date Reported	4/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique as per AS 4964-2004.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam .

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

4/04/2017

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



### SE163541 R0

#### VOC's in Soil [AN433] Tested: 28/3/2017

			TP50 0-0.1	TP59 0-0.15	TP68 0-0.15	TP76 0-0.15	TP80 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			23/3/2017	23/3/2017	22/3/2017	23/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.008	SE163541.016	SE163541.023	SE163541.027
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			Tripspike TS3	Tripspike TS4
PARAMETER	UOM	LOR	SOIL - 22/3/2017 SE163541.043	SOIL - 22/3/2017 SE163541.044
Benzene	mg/kg	0.1	[88%]	[98%]
Toluene	mg/kg	0.1	[91%]	[70%]
Ethylbenzene	mg/kg	0.1	[87%]	[93%]
m/p-xylene	mg/kg	0.2	[87%]	[95%]
o-xylene	mg/kg	0.1	[86%]	[91%]
Total Xylenes*	mg/kg	0.3	-	-
Total BTEX	mg/kg	0.6	-	-
Naphthalene	mg/kg	0.1	-	-



### SE163541 R0

#### Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 28/3/2017

			TP50 0-0.1	TP59 0-0.15	TP68 0-0.15	TP76 0-0.15	TP80 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			23/3/2017			23/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.008	SE163541.016	SE163541.023	SE163541.027
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25



#### SE163541 R0

#### TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 28/3/2017

			TP50 0-0.1	TP59 0-0.15	TP68 0-0.15	TP76 0-0.15	TP80 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
DADANETED		1.05	23/3/2017	23/3/2017	22/3/2017	23/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.008	SE163541.016	SE163541.023	SE163541.027
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	50	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	57	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210



#### SE163541 R0

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 28/3/2017

			TP50 0-0.1	TP59 0-0.15	TP68 0-0.15	TP76 0-0.15	TP80 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			23/3/2017			23/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.008	SE163541.016	SE163541.023	SE163541.027
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.4	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	1.7	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.7	<0.8	<0.8



### SE163541 R0

#### OC Pesticides in Soil [AN420] Tested: 28/3/2017

			C617	C618	C619	C620	C621
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	23/3/2017 SE163541.045	22/3/2017 SE163541.046	22/3/2017 SE163541.047	23/3/2017 SE163541.048	22/3/2017 SE163541.049
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1



#### SE163541 R0

#### OC Pesticides in Soil [AN420] Tested: 28/3/2017 (continued)

			C622	C623	C625	C626	C627
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	22/3/2017 SE163541.050	22/3/2017	22/3/2017 SE163541.053	22/3/2017 SE163541.054	22/3/2017 SE163541.055
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	SE163541.051 <0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1



#### SE163541 R0

#### OC Pesticides in Soil [AN420] Tested: 28/3/2017 (continued)

			Duplicate CD3
PARAMETER	иом	LOR	SOIL - 22/3/2017 SE163541.057
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.05	<0.05
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1



### SE163541 R0

#### PCBs in Soil [AN420] Tested: 28/3/2017

			C617	C618	C619	C620	C622
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017	22/3/2017	22/3/2017	23/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.045	SE163541.046	SE163541.047	SE163541.048	SE163541.050
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			C623	C625	C626
			SOIL	SOIL	SOIL
			22/3/2017		
PARAMETER	UOM	LOR	SE163541.051	SE163541.053	SE163541.054
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1



## SE163541 R0

#### pH in soil (1:5) [AN101] Tested: 30/3/2017

			TP50 0-0.1	TP58 0-0.15	TP59 0-0.15	TP68 0-0.15	TP71 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017			22/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.007	SE163541.008	SE163541.016	SE163541.019
pH	pH Units	-	7.1	6.7	6.0	5.7	6.1

			TP76 0-0.15	TP80 0-0.15	TP81 0-0.15	TP84 0-0.15
			SOIL	SOIL	SOIL	SOIL
			- 23/3/2017			- 22/3/2017
PARAMETER	UOM	LOR	SE163541.023	SE163541.027	SE163541.029	SE163541.032
рН	pH Units	-	7.8	6.1	5.9	7.3



#### Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 30/3/2017

			TP50 0-0.1	TP58 0-0.15	TP59 0-0.15	TP68 0-0.15	TP71 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER		1.00	23/3/2017	22/3/2017	23/3/2017	22/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.007	SE163541.008	SE163541.016	SE163541.019
Exchangeable Sodium, Na	mg/kg	2	25	65	130	32	78
Exchangeable Sodium, Na	meq/100g	0.01	0.11	0.28	0.56	0.14	0.34
Exchangeable Sodium Percentage*	%	0.1	0.8	1.5	6.3	1.9	4.9
Exchangeable Potassium, K	mg/kg	2	130	530	180	290	160
Exchangeable Potassium, K	meq/100g	0.01	0.33	1.4	0.46	0.73	0.40
Exchangeable Potassium Percentage*	%	0.1	2.4	7.2	5.2	9.9	5.9
Exchangeable Calcium, Ca	mg/kg	2	2400	2200	620	450	680
Exchangeable Calcium, Ca	meq/100g	0.01	12	11	3.1	2.2	3.4
Exchangeable Calcium Percentage*	%	0.1	85.6	59.0	34.7	30.2	49.6
Exchangeable Magnesium, Mg	mg/kg	2	190	750	590	520	330
Exchangeable Magnesium, Mg	meq/100g	0.02	1.6	6.1	4.8	4.3	2.7
Exchangeable Magnesium Percentage*	%	0.1	11.3	32.3	53.8	58.0	39.6
Cation Exchange Capacity	meq/100g	0.02	14	19	8.9	7.4	6.9

			TP76 0-0.15	TP80 0-0.15	TP81 0-0.15	TP84 0-0.15
			SOIL	SOIL	SOIL	SOIL
			23/3/2017			22/3/2017
PARAMETER	UOM	LOR	SE163541.023	SE163541.027	SE163541.029	SE163541.032
Exchangeable Sodium, Na	mg/kg	2	15	68	68	36
Exchangeable Sodium, Na	meq/100g	0.01	0.06	0.30	0.30	0.16
Exchangeable Sodium Percentage*	%	0.1	0.5	3.3	7.8	1.3
Exchangeable Potassium, K	mg/kg	2	180	120	190	690
Exchangeable Potassium, K	meq/100g	0.01	0.47	0.30	0.48	1.8
Exchangeable Potassium Percentage*	%	0.1	3.3	3.4	12.5	14.8
Exchangeable Calcium, Ca	mg/kg	2	2500	950	280	1300
Exchangeable Calcium, Ca	meq/100g	0.01	13	4.8	1.4	6.4
Exchangeable Calcium Percentage*	%	0.1	89.0	53.6	36.5	53.3
Exchangeable Magnesium, Mg	mg/kg	2	120	430	200	450
Exchangeable Magnesium, Mg	meq/100g	0.02	1.0	3.5	1.6	3.7
Exchangeable Magnesium Percentage*	%	0.1	7.2	39.6	43.2	30.5
Cation Exchange Capacity	meq/100g	0.02	14	8.9	3.8	12



### SE163541 R0

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 30/3/2017

			C617	C618	C619	C620	C621
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 23/3/2017	- 22/3/2017	- 22/3/2017	- 23/3/2017	- 22/3/2017
PARAMETER	UOM	LOR	SE163541.045	SE163541.046	SE163541.047	SE163541.048	SE163541.049
Arsenic, As	mg/kg	3	6	5	7	6	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	0.3	<0.3
Chromium, Cr	mg/kg	0.3	9.3	9.3	11	10	11
Copper, Cu	mg/kg	0.5	20	14	22	20	310
Lead, Pb	mg/kg	1	36	23	28	29	22
Nickel, Ni	mg/kg	0.5	7.3	8.5	13	11	9.6
Zinc, Zn	mg/kg	0.5	82	55	77	60	58

			C622	C623	C624	C625	C626
			SOIL	SOIL	SOIL	SOIL	SOIL
			22/3/2017	22/3/2017	22/3/2017	22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.050	SE163541.051	SE163541.052	SE163541.053	SE163541.054
Arsenic, As	mg/kg	3	6	4	5	5	6
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3	0.4	<0.3
Chromium, Cr	mg/kg	0.3	9.6	5.7	8.8	8.8	9.9
Copper, Cu	mg/kg	0.5	22	14	14	16	18
Lead, Pb	mg/kg	1	26	27	25	23	27
Nickel, Ni	mg/kg	0.5	8.4	4.5	10	11	9.9
Zinc, Zn	mg/kg	0.5	68	35	38	70	51

			C627	C628	Duplicate CD3
			SOIL	SOIL	SOIL
			22/3/2017	22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.055	SE163541.056	SE163541.057
Arsenic, As	mg/kg	3	7	5	5
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	0.3
Chromium, Cr	mg/kg	0.3	9.7	9.7	9.2
Copper, Cu	mg/kg	0.5	17	18	17
Lead, Pb	mg/kg	1	27	18	27
Nickel, Ni	mg/kg	0.5	13	8.0	13
Zinc, Zn	mg/kg	0.5	42	45	69



## SE163541 R0

#### Mercury in Soil [AN312] Tested: 29/3/2017

			C617	C618	C619	C620	C621
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017			23/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.045	SE163541.046	SE163541.047	SE163541.048	SE163541.049
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			C622	C623	C624	C625	C626
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 22/3/2017	- 22/3/2017	- 22/3/2017	- 22/3/2017	- 22/3/2017
PARAMETER	UOM	LOR	SE163541.050	SE163541.051	SE163541.052	SE163541.053	SE163541.054
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			C627	C628	Duplicate CD3
			SOIL	SOIL	SOIL
					-
			22/3/2017	22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.055	SE163541.056	SE163541.057
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05



## SE163541 R0

#### Moisture Content [AN002] Tested: 28/3/2017

			TP50 0-0.1	TP58 0-0.15	TP59 0-0.15	TP68 0-0.15	TP71 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017			22/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.007	SE163541.008	SE163541.016	SE163541.019
% Moisture	%w/w	0.5	21	26	22	19	28

			TP76 0-0.15	TP80 0-0.15	TP81 0-0.15	TP84 0-0.15	C617
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017			22/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.023	SE163541.027	SE163541.029	SE163541.032	SE163541.045
% Moisture	%w/w	0.5	22	23	23	19	26

			C618	C619	C620	C621	C622
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 22/3/2017 SE163541.046	- 22/3/2017 SE163541.047	- 23/3/2017 SE163541.048	- 22/3/2017 SE163541.049	- 22/3/2017 SE163541.050
% Moisture	%w/w	0.5	19	24	23	23	22

			C623	C624	C625	C626	C627
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			22/3/2017			22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.051	SE163541.052	SE163541.053	SE163541.054	SE163541.055
% Moisture	%w/w	0.5	20	23	24	18	25

			C628	Duplicate CD3
			SOIL	SOIL
			22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.056	SE163541.057
% Moisture	%w/w	0.5	17	24



#### SE163541 R0

#### Gravimetric Determination of Asbestos in Soil [AN605] Tested: 30/3/2017

			TP50 0-0.1	TP53 0-0.1	TP54 0-0.1	TP56 0-0.15	TP57 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017	23/3/2017	23/3/2017	22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.001	SE163541.002	SE163541.003	SE163541.005	SE163541.006
Total Sample Weight	g	1	490	870	749	935	558
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Туре	No unit	-	NAD,ORG	NAD,ORG	NAD	NAD,ORG	NAD

			TP59 0-0.15	TP60 0-0.15	TP61 0-0.15	TP62 0-0.1	TP68 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			23/3/2017	23/3/2017	23/3/2017	23/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541.008	SE163541.009	SE163541.010	SE163541.011	SE163541.016
Total Sample Weight	g	1	687	484	564	676	880
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD	NAD	NAD	NAD	NAD

			TP69 0-0.15	TP70 0-0.15	TP72 0-0.15	TP73 0-0.15	TP76 0-0.15
			00"	0.01			001
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			22/3/2017	22/3/2017	22/3/2017	22/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541.017	SE163541.018	SE163541.020	SE163541.021	SE163541.023
Total Sample Weight	g	1	963	1120	728	717	735
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Туре	No unit	-	NAD	NAD	NAD	NAD	NAD,ORG

			TP77 0-0.1	TP78 0-0.15	TP80 0-0.15	TP80 0.5-0.7	TP84 0-0.15
PARAMETER	UOM	LOR	SOIL - 22/3/2017 SE163541.024	SOIL - 23/3/2017 SE163541.025	SOIL - 23/3/2017 SE163541.027	SOIL - 23/3/2017 SE163541.028	SOIL - 22/3/2017 SE163541.032
Total Sample Weight	g	1	648	632	747	565	723
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD,ORG	NAD	NAD,ORG	NAD	NAD



#### Gravimetric Determination of Asbestos in Soil [AN605] Tested: 30/3/2017 (continued)

			TP84 0.5-0.8	TP84 1.0-1.3	TP84 1.5-1.8	TP85 0-0.15
			SOIL	SOIL	SOIL	SOIL
			22/3/2017			23/3/2017
PARAMETER	UOM	LOR	SE163541.033	SE163541.034	SE163541.035	SE163541.036
Total Sample Weight	g	1	845	510	565	749
ACM in >7mm Sample*	g	0.01	<0.01	<0.01	<0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AF/FA in <2mm Sample*	g	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Asbestos in soil ( >7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type	No unit	-	NAD	NAD	NAD	NAD



#### SE163541 R0

#### Metals in Water (Dissolved) by ICPOES [AN320/AN321] Tested: 31/3/2017

			Rinsate R3	Rinsate R4
			WATER	WATER
			- 22/3/2017	- 23/3/2017
PARAMETER	UOM	LOR	SE163541.041	SE163541.042
Arsenic, As	mg/L	0.02	<0.02	<0.02
Cadmium, Cd	mg/L	0.001	0.002	0.001
Chromium, Cr	mg/L	0.005	<0.005	<0.005
Copper, Cu	mg/L	0.005	<0.005	0.006
Lead, Pb	mg/L	0.02	<0.02	<0.02
Nickel, Ni	mg/L	0.005	<0.005	<0.005
Zinc, Zn	mg/L	0.01	<0.01	0.01



#### SE163541 R0

#### Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 30/3/2017

			Rinsate R3	Rinsate R4
			WATER	WATER
			22/3/2017	
PARAMETER	UOM	LOR	SE163541.041	SE163541.042
Mercury	mg/L	0.0001	<0.0001	<0.0001



	METHODOLOGY SUMMARY
— METHOD —	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN122	Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pre-treated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.
AN122	The Exchangeable Sodium Percentage (ESP) is calculated as the exchangeable sodium divided by the CEC (all in meq/100g) times 100. ESP can be used to categorise the sodicity of the soil as below:
	ESP < 6%non-sodicESP 6-15%sodicESP >15%strongly sodic
	Method is refernced to Rayment and Higginson, 1992, sections 15D3 and 15N1
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).



## **METHOD SUMMARY**

AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS / ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN605	This technique gravimetrically determines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free fibres which are only observed by standard trace analysis as per AN 602.
AN605	AMO = Amosite Detected CRY = Chrysotile Detected CRO = Crocidolite Detected ORG = Organic Fibres Detected SMF = Synthetic Mineral Fibres Detected UMF = Unknown Mineral Fibres Detected NAD = No Asbestos Detected
AN605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009.



#### FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL IS LNR

Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ¢↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20Q 20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.



## STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	_S	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13793-5 Airds	SGS Reference	SE163541 R0	
Order Number	(Not specified)	Date Received	23 Mar 2017	
Samples	57	Date Reported	04 Apr 2017	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

1 item

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 24/3/17@3:08pm Yes 11.3°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 42 Soil, 2 Water COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### eable Cations and Cation Exchange Canacity (CEC/ESP/SAR)

Exchangeable Cations an	Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
TP50 0-0.1	SE163541.001	LB121344	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	31 Mar 2017	
TP58 0-0.15	SE163541.007	LB121344	22 Mar 2017	23 Mar 2017	19 Apr 2017	30 Mar 2017	19 Apr 2017	31 Mar 2017	
TP59 0-0.15	SE163541.008	LB121344	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	31 Mar 2017	
TP68 0-0.15	SE163541.016	LB121344	22 Mar 2017	23 Mar 2017	19 Apr 2017	30 Mar 2017	19 Apr 2017	31 Mar 2017	
TP71 0-0.15	SE163541.019	LB121344	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	31 Mar 2017	
TP76 0-0.15	SE163541.023	LB121344	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	31 Mar 2017	
TP80 0-0.15	SE163541.027	LB121344	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	31 Mar 2017	
TP81 0-0.15	SE163541.029	LB121344	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	31 Mar 2017	
TP84 0-0.15	SE163541.032	LB121344	22 Mar 2017	23 Mar 2017	19 Apr 2017	30 Mar 2017	19 Apr 2017	31 Mar 2017	

Gravimetric Determination of Asbestos in	n Soil	
------------------------------------------	--------	--

Gravimetric Determination	n of Asbestos in Soil						Method: I	ME-(AU)-[ENV]AN60
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP50 0-0.1	SE163541.001	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP53 0-0.1	SE163541.002	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP54 0-0.1	SE163541.003	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP56 0-0.15	SE163541.005	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP57 0-0.15	SE163541.006	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP59 0-0.15	SE163541.008	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP60 0-0.15	SE163541.009	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP61 0-0.15	SE163541.010	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP62 0-0.1	SE163541.011	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	03 Apr 2017
TP68 0-0.15	SE163541.016	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP69 0-0.15	SE163541.017	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP70 0-0.15	SE163541.018	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP72 0-0.15	SE163541.020	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP73 0-0.15	SE163541.021	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	03 Apr 2017
TP76 0-0.15	SE163541.023	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	04 Apr 2017
TP77 0-0.1	SE163541.024	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	04 Apr 2017
TP78 0-0.15	SE163541.025	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	04 Apr 2017
TP80 0-0.15	SE163541.027	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	04 Apr 2017
TP80 0.5-0.7	SE163541.028	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	04 Apr 2017
TP84 0-0.15	SE163541.032	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	04 Apr 2017
TP84 0.5-0.8	SE163541.033	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	04 Apr 2017
TP84 1.0-1.3	SE163541.034	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	04 Apr 2017
TP84 1.5-1.8	SE163541.035	LB121400	22 Mar 2017	23 Mar 2017	18 Sep 2017	30 Mar 2017	18 Sep 2017	04 Apr 2017
TP85 0-0.15	SE163541.036	LB121400	23 Mar 2017	23 Mar 2017	19 Sep 2017	30 Mar 2017	19 Sep 2017	04 Apr 2017

Mercury (dissolved) in Wa	ater						Method: ME-(AU)-[ENV	]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R3	SE163541.041	LB121371	22 Mar 2017	23 Mar 2017	19 Apr 2017	30 Mar 2017	19 Apr 2017	30 Mar 2017
Rinsate R4	SE163541.042	LB121371	23 Mar 2017	23 Mar 2017	20 Apr 2017	30 Mar 2017	20 Apr 2017	30 Mar 2017
Mercury in Soil							Method:	ME-(AU)-[ENV]AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
C617	SE163541.045	LB121325	23 Mar 2017	23 Mar 2017	20 Apr 2017	29 Mar 2017	20 Apr 2017	31 Mar 2017
C618	SE163541.046	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C619	SE163541.047	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C620	SE163541.048	LB121325	23 Mar 2017	23 Mar 2017	20 Apr 2017	29 Mar 2017	20 Apr 2017	31 Mar 2017
C621	SE163541.049	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C622	SE163541.050	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C623	SE163541.051	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C624	SE163541.052	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C625	SE163541.053	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C626	SE163541.054	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C627	SE163541.055	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
C628	SE163541.056	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017
Duplicate CD3	SE163541.057	LB121325	22 Mar 2017	23 Mar 2017	19 Apr 2017	29 Mar 2017	19 Apr 2017	31 Mar 2017

Metals in Water (Dissolved) by ICPOES

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Rinsate R3	SE163541.041	LB121421	22 Mar 2017	23 Mar 2017	18 Sep 2017	31 Mar 2017	18 Sep 2017	31 Mar 2017
Rinsate R4	SE163541.042	LB121421	23 Mar 2017	23 Mar 2017	19 Sep 2017	31 Mar 2017	19 Sep 2017	31 Mar 2017

Method: ME-(AU)-[ENV]AN320/AN321



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Moisture Content

loisture Content							Weu lou.	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P50 0-0.1	SE163541.001	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P53 0-0.1	SE163541.002	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P54 0-0.1	SE163541.003	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P55 0-0.15	SE163541.004	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P56 0-0.15	SE163541.005	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P57 0-0.15	SE163541.006	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P58 0-0.15	SE163541.007	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P59 0-0.15	SE163541.008	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P60 0-0.15	SE163541.009	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P61 0-0.15	SE163541.010	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P62 0-0.1	SE163541.011	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P63 0-0.15	SE163541.012	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
FP64 0-0.15	SE163541.013	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P65 0-0.15	SE163541.014	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P66 0-0.15	SE163541.015	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P68 0-0.15	SE163541.016	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P69 0-0.15	SE163541.017	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P70 0-0.15	SE163541.018	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P71 0-0.15	SE163541.019	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P72 0-0.15	SE163541.020	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P73 0-0.15	SE163541.021	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P74 0-0.15	SE163541.022	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P76 0-0.15	SE163541.023	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P77 0-0.1	SE163541.024	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P78 0-0.15	SE163541.025	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P79 0-0.15	SE163541.026	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P80 0-0.15	SE163541.027	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P81 0-0.15	SE163541.029	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P82 0-0.15	SE163541.030	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P83 0-0.15	SE163541.031	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P84 0-0.15	SE163541.032	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	30 Mar 2017
P84 0.5-0.8	SE163541.033	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P84 1.0-1.3	SE163541.034	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P84 1.5-1.8	SE163541.035	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P85 0-0.15	SE163541.036	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
P86 0-0.15	SE163541.037	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
7	SE163541.038	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
8	SE163541.039	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
9	SE163541.040	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
				23 Mar 2017 23 Mar 2017				
617	SE163541.045	LB121237	23 Mar 2017		06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
:618	SE163541.046	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
619	SE163541.047	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
620	SE163541.048	LB121237	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
621	SE163541.049	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
622	SE163541.050	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
623	SE163541.051	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
624	SE163541.052	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
625	SE163541.053	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
626	SE163541.054	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
627	SE163541.055	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
628	SE163541.056	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
uplicate CD3	SE163541.057	LB121237	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	02 Apr 2017	31 Mar 2017
C Pesticides in Soil							Mathad	ME-(AU)-[ENV]AN
							IVIOU IOU.	····(/\0/*[EIVY]/4IV



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### OC Pesticides in Soil (continued)

OC Pesticides in Soil (cor	ntinued)						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
C617	SE163541.045	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C618	SE163541.046	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C619	SE163541.047	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C620	SE163541.048	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C621	SE163541.049	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C622	SE163541.050	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C623	SE163541.051	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C625	SE163541.053	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C626	SE163541.054	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C627	SE163541.055	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
Duplicate CD3	SE163541.057	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
PAH (Polynuclear Aroma	tic Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP50 0-0.1	SE163541.001	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP59 0-0.15	SE163541.008	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP68 0-0.15	SE163541.016	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP76 0-0.15	SE163541.023	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP80 0-0.15	SE163541.027	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C617	SE163541.045	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C618	SE163541.046	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C619	SE163541.047	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C620	SE163541.048	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C621	SE163541.049	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C622	SE163541.050	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C623	SE163541.051	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C625	SE163541.053	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C626	SE163541.054	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C627	SE163541.055	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
Duplicate CD3	SE163541.057	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
CBs in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP50 0-0.1	SE163541.001	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP59 0-0.15	SE163541.008	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017

TP50 0-0.1	SE163541.001	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP59 0-0.15	SE163541.008	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP68 0-0.15	SE163541.016	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP76 0-0.15	SE163541.023	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
TP80 0-0.15	SE163541.027	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C617	SE163541.045	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C618	SE163541.046	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C619	SE163541.047	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C620	SE163541.048	LB121200	23 Mar 2017	23 Mar 2017	06 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C621	SE163541.049	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C622	SE163541.050	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C623	SE163541.051	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C625	SE163541.053	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C626	SE163541.054	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
C627	SE163541.055	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017
Duplicate CD3	SE163541.057	LB121200	22 Mar 2017	23 Mar 2017	05 Apr 2017	28 Mar 2017	07 May 2017	31 Mar 2017

pH in soll (1:5)							Method:	ME-(AU)-[ENV]AN101
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP50 0-0.1	SE163541.001	LB121381	23 Mar 2017	23 Mar 2017	30 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP58 0-0.15	SE163541.007	LB121381	22 Mar 2017	23 Mar 2017	29 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP59 0-0.15	SE163541.008	LB121381	23 Mar 2017	23 Mar 2017	30 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP68 0-0.15	SE163541.016	LB121381	22 Mar 2017	23 Mar 2017	29 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP71 0-0.15	SE163541.019	LB121381	23 Mar 2017	23 Mar 2017	30 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP76 0-0.15	SE163541.023	LB121381	23 Mar 2017	23 Mar 2017	30 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP80 0-0.15	SE163541.027	LB121381	23 Mar 2017	23 Mar 2017	30 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP81 0-0.15	SE163541.029	LB121381	23 Mar 2017	23 Mar 2017	30 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017
TP84 0-0.15	SE163541.032	LB121381	22 Mar 2017	23 Mar 2017	29 Mar 2017	29 Mar 2017	30 Mar 2017	30 Mar 2017



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed C617 SE163541 045 LB121348 23 Mar 2017 23 Mar 2017 19 Sep 2017 30 Mar 2017 19 Sep 2017 31 Mar 2017 C618 SE163541.046 LB121348 22 Mar 2017 23 Mar 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 18 Sep 2017 C619 SE163541.047 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 C620 SE163541.048 LB121348 23 Mar 2017 23 Mar 2017 19 Sep 2017 30 Mar 2017 19 Sep 2017 31 Mar 2017 C621 SE163541.049 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 31 Mar 2017 C622 SE163541.050 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 C623 22 Mar 2017 SE163541.051 LB121348 23 Mar 2017 30 Mar 2017 18 Sep 2017 18 Sep 2017 31 Mar 2017 C624 SE163541.052 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 C625 SE163541.053 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 C626 SE163541.054 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 31 Mar 2017 C627 SE163541.055 LB121348 22 Mar 2017 23 Mar 2017 30 Mar 2017 18 Sep 2017 18 Sep 2017 C628 SE163541.056 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 Duplicate CD3 SE163541.057 LB121348 22 Mar 2017 23 Mar 2017 18 Sep 2017 30 Mar 2017 18 Sep 2017 31 Mar 2017 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Extracted Analysis Due Analysed Extraction Due Sample Name Sample No. QC Ref Sampled Received TP50 0-0.1 07 May 2017 SE163541.001 LB121200 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 31 Mar 2017 TP59 0-0 15 SE163541 008 I B121200 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 TP68 0-0.15 SE163541.016 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 TP76 0-0.15 SE163541.023 LB121200 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 TP80 0-0.15 SE163541.027 23 Mar 2017 23 Mar 2017 28 Mar 2017 LB121200 06 Apr 2017 07 May 2017 31 Mar 2017 C617 SE163541.045 LB121200 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C618 SE163541.046 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C619 SE163541.047 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C620 SE163541.048 LB121200 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C621 SE163541.049 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C622 SE163541.050 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C623 SE163541.051 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 22 Mar 2017 23 Mar 2017 C625 SE163541.053 LB121200 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 C626 23 Mar 2017 07 May 2017 SE163541.054 LB121200 22 Mar 2017 05 Apr 2017 28 Mar 2017 31 Mar 2017 C627 SE163541 055 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 Duplicate CD3 SE163541.057 LB121200 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 31 Mar 2017 VOC's in Soi Method: ME-(AU)-[ENVIAN433 Sample No. Analysed Sample Name Received Extraction Due QC Ref Sampled Extracted Analysis Due TP50 0-0.1 SE163541.001 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP59 0-0.15 SE163541.008 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP68 0-0.15 SE163541.016 LB121220 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP76 0-0.15 SE163541.023 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP80 0-0.15 SE163541.027 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 SE163541.043 22 Mar 2017 23 Mar 2017 28 Mar 2017 30 Mar 2017 Tripspike TS3 LB121220 05 Apr 2017 07 May 2017 22 Mar 2017 Tripspike TS4 SE163541.044 LB121220 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-IENVIAN433 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due TP50 0-0.1 SE163541.001 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP59 0-0.15 SE163541.008 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 23 Mar 2017 TP68 0-0.15 SE163541.016 LB121220 22 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP76 0-0.15 SE163541.023 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 TP80 0-0.15 SE163541.027 LB121220 23 Mar 2017 23 Mar 2017 06 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 Tripspike TS3 SE163541.043 LB121220 22 Mar 2017 23 Mar 2017 05 Apr 2017 28 Mar 2017 07 May 2017 30 Mar 2017 22 Mar 2017 23 Mar 2017 SE163541.044 LB121220 28 Mar 2017 30 Mar 2017 Tripspike TS4 05 Apr 2017 07 May 2017



4/4/2017

## SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil					E-(AU)-[ENV]/
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	C617	SE163541.045	%	60 - 130%	109
	C618	SE163541.046	%	60 - 130%	115
	C619	SE163541.047	%	60 - 130%	119
	C620	SE163541.048	%	60 - 130%	113
	<u>C621</u>	SE163541.049	%	60 - 130%	124
	C622	SE163541.050	%	60 - 130%	110
	C623	SE163541.051	%	60 - 130%	111
	C625	SE163541.053	%	60 - 130%	109
	C626	SE163541.054	%	60 - 130%	111
	C627	SE163541.055	%	60 - 130%	113
	Duplicate CD3	SE163541.057	%	60 - 130%	107
		02100041.007	70		
AH (Polynuclear Aromatic Hydrocarbons) in Soil					E-(AU)-[ENV]/
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	TP50 0-0.1	SE163541.001	%	70 - 130%	102
	TP59 0-0.15	SE163541.008	%	70 - 130%	98
	TP68 0-0.15	SE163541.016	%	70 - 130%	88
	TP76 0-0.15	SE163541.023	%	70 - 130%	92
	TP80 0-0.15	SE163541.027	%	70 - 130%	92
114-p-terphenyl (Surrogate)	TP50 0-0.1	SE163541.001	%	70 - 130%	110
	TP59 0-0.15	SE163541.008	%	70 - 130%	92
	TP68 0-0.15	SE163541.016	%	70 - 130%	90
	TP76 0-0.15	SE163541.023	%	70 - 130%	108
	TP80 0-0.15	SE163541.027	%	70 - 130%	94
d5-nitrobenzene (Surrogate)	TP50 0-0.1	SE163541.001	%	70 - 130%	106
is-mitobenzene (Surrogate)					
	TP59 0-0.15	SE163541.008	%	70 - 130%	104
	TP68 0-0.15	SE163541.016	%	70 - 130%	96
	TP76 0-0.15	SE163541.023	%	70 - 130%	94
	TP80 0-0.15	SE163541.027	%	70 - 130%	98
CBs in Soil				Method: M	E-(AU)-[ENV]
Parameter	Sample Name	Sample Number	Units	Criteria	Recover
Fetrachloro-m-xylene (TCMX) (Surrogate)	C617	SE163541.045	%	60 - 130%	109
	C618	SE163541.046	%	60 - 130%	115
	C619	SE163541.047	%	60 - 130%	119
	C620	SE163541.048	%	60 - 130%	117
	C622	SE163541.050	%	60 - 130%	110
	C623	SE163541.051	%	60 - 130%	111
			%		
		SE163541.053			109
	C625			60 - 130%	
	C625	SE163541.054	%	60 - 130%	111
DC's in Soil		SE163541.054		60 - 130%	
		SE163541.054 Sample Number		60 - 130%	e-(au)-[env]
arameter	C626		%	60 - 130% Method: Mi	E-(AU)-[ENV]
arameter	C626 Sample Name	Sample Number SE163541.001	% Units	60 - 130% <mark>Method: M</mark> Criteria	<mark>E-(AU)-[ENV]</mark> Recover 80
arameter	C626 Sample Name TP50 0-0.1 TP59 0-0.15	Sample Number SE163541.001 SE163541.008	% Units % %	60 - 130% Method: MI Criteria 60 - 130% 60 - 130%	E-(AU)-[ENV Recover 80 73
arameter	C626 Sample Name TP50 0-0.1 TP59 0-0.15 TP68 0-0.15	Sample Number SE163541.001 SE163541.008 SE163541.016	% Units % % %	60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV Recover 80 73 73
arameter	C626 Sample Name TP50 0-0.1 TP59 0-0.15 TP68 0-0.15 TP76 0-0.15	Sample Number SE163541.001 SE163541.008 SE163541.016 SE163541.023	% Units % % % %	60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV Recover 80 73 73 73 74
arameter	C626 Sample Name TP50 0-0.1 TP59 0-0.15 TP68 0-0.15	Sample Number SE163541.001 SE163541.008 SE163541.016	% Units % % % %	60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV] Recover 80 73 73
arameter	C626 Sample Name TP50 0-0.1 TP59 0-0.15 TP68 0-0.15 TP76 0-0.15	Sample Number SE163541.001 SE163541.008 SE163541.016 SE163541.023	% Units % % % %	60 - 130% Method: M Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV] Recover 80 73 73 73 74
arameter	C626 Sample Name TP50 0-0.1 TP59 0-0.15 TP68 0-0.15 TP76 0-0.15 TP80 0-0.15	Sample Number SE163541.001 SE163541.008 SE163541.016 SE163541.023 SE163541.027	% Units % % % %	60 - 130% Method: MI Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	E-(AU)-[ENV Recover 80 73 73 73 74 81
arameter rromofluorobenzene (Surrogate)	C626 TP50 0-0.1 TP59 0-0.15 TP68 0-0.15 TP76 0-0.15 TP76 0-0.15 TP80 0-0.15 TP80 0-0.15 Tripspike TS3 Tripspike TS4	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.043           SE163541.044	% Units % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV Recover 80 73 73 74 81 82 77
arameter rromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           TP80 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.1	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.043           SE163541.044           SE163541.001	% Units % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV Recover 80 73 73 74 81 82 77 91
arameter Iromofluorobenzene (Surrogate)	C626           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           TP80 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.043           SE163541.044           SE163541.001           SE163541.008	% Units % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89
arameter Iromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           TP80 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP59 0-0.15           TP68 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.027           SE163541.043           SE163541.044           SE163541.001           SE163541.001           SE163541.001           SE163541.008           SE163541.016	% Units % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV Recover 80 73 73 74 81 82 77 91 89 92
arameter rromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP68 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.027           SE163541.043           SE163541.044           SE163541.001           SE163541.001           SE163541.001           SE163541.016           SE163541.023	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90
arameter Bromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           TP80 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP59 0-0.15           TP68 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.027           SE163541.043           SE163541.044           SE163541.001           SE163541.001           SE163541.001           SE163541.008           SE163541.016	% Units % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92
arameter Bromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP68 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.027           SE163541.043           SE163541.044           SE163541.001           SE163541.001           SE163541.001           SE163541.016           SE163541.023	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90
arameter Bromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP68 0-0.15           TP76 0-0.15           TP80 0-0.15           Tripspike TS3	Sample Number           SE163541.001           SE163541.008           SE163541.008           SE163541.023           SE163541.023           SE163541.043           SE163541.044           SE163541.001           SE163541.001           SE163541.001           SE163541.016           SE163541.023           SE163541.023	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV Recover 80 73 73 74 81 82 77 91 89 92 90 85 98
DC's in Soil arameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP68 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP76 0-0.15           TP78 0-0.15           TP78 0-0.15           TP80 0-0.15           Tripspike TS3           Tripspike TS3           Tripspike TS3	Sample Number           SE163541.001           SE163541.008           SE163541.008           SE163541.016           SE163541.023           SE163541.027           SE163541.043           SE163541.044           SE163541.001           SE163541.001           SE163541.016           SE163541.023           SE163541.023           SE163541.023           SE163541.023           SE163541.023           SE163541.043           SE163541.043           SE163541.043           SE163541.044	% Units % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90 85 98 98 93
arameter Bromofluorobenzene (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP66 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP76 0-0.15           TP78 0-0.15           TP78 0-0.15           TP78 0-0.15           Tripspike TS3           Tripspike TS3           Tripspike TS4           TP50 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.008           SE163541.016           SE163541.023           SE163541.023           SE163541.043           SE163541.044           SE163541.001           SE163541.008           SE163541.001           SE163541.023           SE163541.023           SE163541.027           SE163541.027           SE163541.027           SE163541.024           SE163541.024           SE163541.024           SE163541.024           SE163541.024           SE163541.027           SE163541.024           SE163541.027           SE163541.024           SE163541.024           SE163541.024	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90 85 98 93 70
arameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP66 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP60 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP76 0-0.15           TP78 0-0.15           TP78 0-0.15           TP78 0-0.15           Tripspike TS3           Tripspike TS3           Tripspike TS4           TP50 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.023           SE163541.023           SE163541.023           SE163541.023           SE163541.043           SE163541.044           SE163541.001           SE163541.008           SE163541.003           SE163541.023           SE163541.023           SE163541.023           SE163541.043           SE163541.043           SE163541.044           SE163541.044           SE163541.043           SE163541.044           SE163541.044           SE163541.044           SE163541.001           SE163541.001	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90 85 98 93 70 70 74
arameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP66 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP76 0-0.15           TP78 0-0.15           TP78 0-0.15           TP78 0-0.15           Tripspike TS3           Tripspike TS3           Tripspike TS4           TP50 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.008           SE163541.016           SE163541.023           SE163541.023           SE163541.043           SE163541.044           SE163541.001           SE163541.008           SE163541.001           SE163541.023           SE163541.023           SE163541.027           SE163541.027           SE163541.027           SE163541.024           SE163541.024           SE163541.024           SE163541.024           SE163541.024           SE163541.027           SE163541.024           SE163541.027           SE163541.024           SE163541.024           SE163541.024	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90 85 98 93 70
arameter Bromofluorobenzene (Surrogate) 14-1,2-dichloroethane (Surrogate)	C626           Sample Name           TP50 0-0.1           TP59 0-0.15           TP66 0-0.15           TP76 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15           TP60 0-0.15           Tripspike TS4           TP50 0-0.15           TP68 0-0.15           TP76 0-0.15           TP78 0-0.15           TP78 0-0.15           TP78 0-0.15           Tripspike TS3           Tripspike TS3           Tripspike TS4           TP50 0-0.15           Tripspike TS3           Tripspike TS4           TP50 0-0.15	Sample Number           SE163541.001           SE163541.008           SE163541.016           SE163541.023           SE163541.023           SE163541.023           SE163541.023           SE163541.023           SE163541.043           SE163541.044           SE163541.001           SE163541.008           SE163541.003           SE163541.023           SE163541.023           SE163541.023           SE163541.043           SE163541.043           SE163541.044           SE163541.044           SE163541.043           SE163541.044           SE163541.044           SE163541.044           SE163541.001           SE163541.001	% Units % % % % % % % % % % % % % % % % % % %	60 - 130%           Method: MI           Criteria           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%           60 - 130%	E-(AU)-[ENV] Recover 80 73 73 74 81 82 77 91 89 92 90 85 98 93 70 70 74



#### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Parameter Sample Name Sample Number Units Criteria d8-toluene (Surrogate) Tripspike TS3 SE163541.043 % 60 - 130% 80 Tripspike TS4 SE163541.044 % 60 - 130% 79 Dibromofluoromethane (Surrogate) TP50 0-0.1 SE163541.001 % 60 - 130% 86 TP59 0-0.15 SE163541.008 % 60 - 130% 90 TP68 0-0.15 SE163541.016 % 60 - 130% 95 TP76 0-0.15 SE163541.023 % 60 - 130% 89 TP80 0-0.15 SE163541.027 % 60 - 130% 81 SE163541.043 60 - 130% Tripspike TS3 % 75 SE163541.044 Tripspike TS4 % 60 - 130% 95 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-IENVIAN433 Parameter Sample Name Sample Number Units Criteria Recovery % Bromofluorobenzene (Surrogate) TP50 0-0.1 SE163541.001 60 - 130% 80 % TP59 0-0.15 SE163541.008 % 60 - 130% 73 TP68 0-0.15 SE163541.016 % 60 - 130% 73 TP76 0-0.15 SE163541.023 % 60 - 130% 74 TP80 0-0.15 SE163541.027 60 - 130% % 81 d4-1,2-dichloroethane (Surrogate) TP50 0-0.1 SE163541.001 % 60 - 130% 91 TP59 0-0.15 SE163541.008 % 60 - 130% 89 TP68 0-0.15 SE163541.016 % 60 - 130% 92 TP76 0-0.15 SE163541.023 % 60 - 130% 90 SE163541.027 60 - 130% TP80 0-0.15 % 85 d8-toluene (Surrogate) TP50 0-0.1 SE163541.001 % 60 - 130% 70 TP59 0-0.15 SE163541.008 % 60 - 130% 74 TP68 0-0.15 SE163541.016 60 - 130% 77 % TP76 0-0.15 SE163541.023 % 60 - 130% 71 TP80 0-0.15 SE163541.027 % 60 - 130% 74 Dibromofluoromethane (Surrogate) TP50 0-0.1 SE163541.001 60 - 130% 86 % TP59 0-0.15 SE163541.008 % 60 - 130% 90 TP68 0-0.15 SE163541.016 % 60 - 130% 95 TP76 0-0.15 SE163541.023 89 % 60 - 130% TP80 0-0.15 SE163541.027 60 - 130% % 81



## **METHOD BLANKS**

#### SE163541 R0

Method: ME-(AU)-[ENV]AN320/AN321

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and Cat	tion Exchange Capacity (CEC/ESP/SAR)		Method: ME-(AU)-[ENV]AN122
Sample Number	Parameter	Units LC	DR

#### Mercury (dissolved) in Water

Mercury (dissolved) in Water			Method: ME-(AU)-[F	ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB121371.001	Mercury	mg/L	0.0001	<0.0001

#### Mercury in Soil

Mercury in Soil			Metho	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB121325.001	Mercury	mg/kg	0.05	<0.05

#### Metals in Water (Dissolved) by ICPOES

Sample Number	Parameter	Units	LOR	Result
LB121421.001	Arsenic, As	mg/L	0.02	<0.02
	Cadmium, Cd	mg/L	0.001	<0.001
	Chromium, Cr	mg/L	0.005	<0.005
	Copper, Cu	mg/L	0.005	<0.005
	Lead, Pb	mg/L	0.02	<0.02
	Nickel, Ni	mg/L	0.005	<0.005
	Zinc, Zn	mg/L	0.01	<0.01

#### OC Pesticides in Soil

Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN
mple Number	Parameter	Units	LOR	Result
121200.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.05	<0.05
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	111
H (Polynuclear Aromatic Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN

Sample Number	Parameter	Units	LOR	Result
LB121200.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1



### **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

		Parameter	Units	LOR	d: ME-(AU)-[ENV]AN Result
Sample Number B121200.001		Fluoranthene			
B121200.001			mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	106
		2-fluorobiphenyl (Surrogate)	%	-	100
		d14-p-terphenyl (Surrogate)	%	-	90
CBs in Soil				Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
.B121200.001		Arochlor 1016		0.2	<0.2
			mg/kg	· · · · ·	
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	111
otal Recoverable Me	etals in Soil/Waste Solids/Materia	als by ICPOES		Method: ME-	AU)-[ENV]AN040/AN
Sample Number		Parameter	Units	LOR	Result
B121348.001		Arsenic, As	mg/kg	3	<3
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.3	<0.3
		Copper, Cu	mg/kg	0.5	<0.5
		Lead, Pb		1	<1
		Nickel, Ni	mg/kg	0.5	<0.5
			mg/kg		<0.5
		Zinc, Zn	mg/kg	0.5	
RH (Total Recovera	ble Hydrocarbons) in Soil			Metho	d: ME-(AU)-[ENV]AN
		Devenueter			
Sample Number		Parameter	Units	LOR	Result
		TRH C10-C14	Units mg/kg	LOR 20	Result <20
			mg/kg		
		TRH C10-C14	mg/kg mg/kg	20	<20
		TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg	20 45	<20 <45
-		TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg	20 45 45	<20 <45 <45
Sample Number B121200.001		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg	20 45 45 100 110	<20 <45 <45 <100 <110
B121200.001		TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 Metho	<20 <45 <45 <100 <110 wd: ME-(AU)-[ENV]AN
B121200.001		TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110	<20 <45 <45 <100 <110
B121200.001 OC's in Soil Sample Number	Monocyclic Aromatic	TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg	20 45 45 100 110 Metho	<20 <45 <45 <100 <110 wd: ME-(AU)-[ENV]AN
B121200.001 OC's in Soil Sample Number	Monocyclic Aromatic Hydrocarbons	TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg Units	20 45 45 100 110 Metho LOR	<20 <45 <45 <100 <110



### **METHOD BLANKS**

### SE163541 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB121220.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	78
		d4-1,2-dichloroethane (Surrogate)	%	-	71
		d8-toluene (Surrogate)	%	-	71



Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved	) in Water				Metho	d: ME-(AU)-[	ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.041	LB121371.015	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

#### Mercury in Soil

Mercury in Soil						Meth	od: ME-(AU)-[	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.053	LB121325.014	Mercury	mg/kg	0.05	<0.05	<0.05	193	0
SE163542.015	LB121325.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

#### **Moisture Content**

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.045	LB121237.044	% Moisture	%w/w	0.5	26	25	34	3
SE163541.055	LB121237.055	% Moisture	%w/w	0.5	25	25	34	2
SE163541.057	LB121237.058	% Moisture	%w/w	0.5	24	24	34	2

OC Pesticides in §	Soll						Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.053	LB121200.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.05	<0.05	<0.05	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	30	0
PAH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	[ENV]AN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.023	LB121200.022		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
					-	-		-	

Acenaphthylene

Acenaphthene

Phenanthrene

Fluorene

0.1

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

<0.1

< 0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

200

200

200

200

0

0

0

0

0

0

0

0

0



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.023	LB121200.022		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	8
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	8
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	8
CBs in Soil							Meth	od: ME-(AU)-	[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.053	LB121200.023		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	0
H in soil (1:5)		Surrogates			_	0	-	30 100d: ME-(AU)-	
	Duplicate	Surrogates			LOR	0 Original	-	od: ME-(AU)-	(ENVJAN
o <mark>H in soll (1:5)</mark> Original SE163628.001	Duplicate LB121381.014	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg			Meth	od: ME-(AU)-	

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

#### Method: ME-(AU)-[ENV]AN040/AN320 Original Duplicate Units LOR Original Duplicate Criteria % RPD % Parameter LB121348.014 SE163541.048 Arsenic, As mg/kg 3 6 6 46 9 Cadmium, Cd mg/kg 0.3 0.3 <0.3 134 1 Chromium, Cr 0.3 35 mg/kg 10 9.6 8 Copper, Cu mg/kg 0.5 20 19 33 4 Lead, Pb 29 32 33 9 1 mg/kg Nickel, Ni 0.5 11 10 35 11 mg/kg Zinc, Zn mg/kg 0.5 60 55 33 8 SE163541.057 LB121348.024 48 Arsenic, As mg/kg 3 5 6 4 Cadmium, Cd 0.3 0.3 <0.3 130 2 mg/kg Chromium, Cr mg/kg 0.3 9.2 9.0 35 3 0.5 17 17 33 3 Copper, Cu mg/kg Lead, Pb 27 26 34 mg/kg 1 3 Nickel, Ni mg/kg 0.5 13 13 34 3 Zinc, Zn 0.5 69 67 33 3 mg/kg

#### TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recov	erable Hydrocarbons	) in Soil					Meth	od: ME-(AU)-[	ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.023	LB121200.022		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

- V	О	C	s	in	Soi	

### Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.023	LB121220.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	4.6	50	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	4.2	50	7
			d8-toluene (Surrogate)	mg/kg	-	3.6	3.7	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	4.0	50	9
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE163582.001	LB121220.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	3.8	50	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	4.0	50	8
			d8-toluene (Surrogate)	mg/kg	-	3.6	4.2	50	14
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.5	50	8
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
Volatile Petroleum	Hydrocarbons in Soil						Metho	od: ME-(AU)	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541.023	LB121220.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
									4
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	4.6	30	4
		Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	4.6	30	7
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		4.5			
		Surrogates	d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg	-	4.5 3.6	4.2 3.7	30	7
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg	-	4.5	4.2	30 30	7 4
			d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg	- -	4.5 3.6 3.7	4.2 3.7 4.0	30 30 30	7 4 9
SE163582.001	LB121220.024		d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg mg/kg	- - - 0.1	4.5 3.6 3.7 <0.1	4.2 3.7 4.0 <0.1	30 30 30 200	7 4 9 0
SE163582.001	LB121220.024		d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 25	4.5 3.6 3.7 <0.1 <25	4.2 3.7 4.0 <0.1 <25	30 30 30 200 200	7 4 9 0 0
SE163582.001	LB121220.024		d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 25 25	4.5 3.6 3.7 <0.1 <25 <25	4.2 3.7 4.0 <0.1 <25 <25	30 30 30 200 200 200	7 4 9 0 0 0
SE163582.001	LB121220.024	VPH F Bands	d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         Benzene (F0)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 25 25 20	4.5 3.6 3.7 <0.1 <25 <25 <20	4.2 3.7 4.0 <0.1 <25 <25 <20	30 30 200 200 200 200 200	7 4 9 0 0 0 0 0
SE163582.001	LB121220.024	VPH F Bands	d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         Benzene (F0)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20 -	4.5 3.6 3.7 <0.1 <25 <25 <20 4.0	4.2 3.7 4.0 <0.1 <25 <25 <20 3.8	30 30 200 200 200 200 200 30	7 4 9 0 0 0 0 0 5
SE163582.001	LB121220.024	VPH F Bands	d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         Benzene (F0)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- - 0.1 25 25 20 - -	4.5 3.6 3.7 <0.1 <25 <25 <20 4.0 4.3	4.2 3.7 4.0 <0.1 <25 <25 <20 3.8 4.0	30 30 200 200 200 200 200 30 30	7 4 9 0 0 0 0 5 8
SE163582.001	LB121220.024	VPH F Bands	d4-1,2-dichloroethane (Surrogate)         d8-toluene (Surrogate)         Bromofluorobenzene (Surrogate)         Benzene (F0)         TRH C6-C10 minus BTEX (F1)         TRH C6-C10         TRH C6-C9         Dibromofluoromethane (Surrogate)         d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 25 25 20 - - -	4.5 3.6 3.7 <0.1 <25 <25 <20 4.0 4.3 3.6	4.2         3.7         4.0         <0.1	30 30 200 200 200 200 200 30 30 30 30	7 4 9 0 0 0 0 5 8 8 14



Method: ME-(AU)-[ENV]AN320/AN321

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Exchangeable Cations and C	ation Exchange Capacity (CEC/ESP/SAR)				N	Method: ME-(A	U)-[ENV]AN122
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121344.002	Exchangeable Sodium, Na	mg/kg	2	NA	390	80 - 120	88
	Exchangeable Potassium, K	mg/kg	2	NA	343	80 - 120	84
	Exchangeable Calcium, Ca	mg/kg	2	NA	2570	80 - 120	91
	Exchangeable Magnesium, Mg	mg/kg	2	NA	635	80 - 120	91
Mercury in Soil					I	Method: ME-(A	U)-[ENV]AN31:
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121325.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	97

#### Metals in Water (Dissolved) by ICPOES

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B121421.002		Arsenic, As	mg/L	0.02	2.0	2	80 - 120	98
		Cadmium, Cd	mg/L	0.001	2.0	2	80 - 120	100
		Chromium, Cr	mg/L	0.005	2.0	2	80 - 120	100
		Copper, Cu	mg/L	0.005	2.0	2	80 - 120	99
		Lead, Pb	mg/L	0.02	2.0	2	80 - 120	101
		Nickel, Ni	mg/L	0.005	2.0	2	80 - 120	99
		Zinc, Zn	mg/L	0.01	2.0	2	80 - 120	100
C Pesticides in S	ioil					N	/lethod: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B121200.003		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	116
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	121
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	121
		Dieldrin	mg/kg	0.05	0.25	0.2	60 - 140	125
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	125
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	121
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	107
AH (Polynuclear	Surrogates Aromatic Hydroca	, , , , , , , , , , , , , , , , , , , ,	mg/kg	-	0.16		40 - 130 <b>/ethod: ME-(A</b>	
<u> </u>	Aromatic Hydroca	, , , , , , , , , , , , , , , , , , , ,	mg/kg Units	LOR	0.16 Result			U)-[ENV]AN
Sample Number	Aromatic Hydroca	rbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN
ample Number	Aromatic Hydroca	rbons) in Soil Parameter	Units	LOR	Result	N Expected	<mark>/lethod: ME-(A</mark> Criteria %	U)-[ENV]AN Recovery
Sample Number	Aromatic Hydroca	rbons) in Soil Parameter Naphthalene	Units mg/kg	LOR 0.1	Result 4.3	K Expected 4	Aethod: ME-(A Criteria % 60 - 140	U)-[ENV]AN Recovery 108
Sample Number	Aromatic Hydroca	rbons) in Soil Parameter Naphthalene Acenaphthylene	Units mg/kg mg/kg	LOR 0.1 0.1	Result 4.3 3.5	Expected 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89
Sample Number	Aromatic Hydroca	rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	Result 4.3 3.5 4.3	Expected 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108
Sample Number	Aromatic Hydroca	rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	<b>Result</b> 4.3 3.5 4.3 4.0	Expected 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108 100
ample Number	Aromatic Hydroca	rbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1	Result           4.3           3.5           4.3           4.0           4.1	Expected 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108 100 103
Sample Number	Aromatic Hydroca	rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result           4.3           3.5           4.3           4.0           4.1           4.2	Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108 100 103 105
Sample Number	Aromatic Hydroca	rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result           4.3           3.5           4.3           4.0           4.1           4.2           4.4	Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108 100 103 105 110
Sample Number	Aromatic Hydroca	rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.3 3.5 4.3 4.0 4.1 4.2 4.4 4.6	Expected           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108 100 103 105 110 115
ample Number	Aromatic Hydroca	rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result           4.3           3.5           4.3           4.1           4.2           4.4           4.6           0.5	Expected           4           4           4           4           4           4           4           5	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 108 89 108 100 103 105 110 115 96
Sample Number	Aromatic Hydroca	rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	Result           4.3           3.5           4.3           4.1           4.2           4.4           4.6           0.5           0.5	Expected           4           4           4           4           4           4           4           5           0.5           0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	U)-[ENV]AN Recovery 108 89 108 100 103 105 110 115 96 90 102
AH (Polynuclear Sample Number LB121200.002 CBs in Soil Sample Number	Aromatic Hydroca	rbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 - -	Result           4.3           3.5           4.3           4.1           4.2           4.4           4.6           0.5           0.5	Expected           4           4           4           4           4           4           4           5           0.5           0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	U)-[ENVJAN Recovery 108 89 108 100 103 105 110 115 96 90 102

pH in soil (1:5)					N	Method: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	5 LOR	Result	Expected	Criteria %	Recovery %
LB121381.003	pН	pH Units	-	7.4	7.415	98 - 102	100

Total Recoverable Metals in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121348.002	Arsenic, As	mg/kg	3	59	50	80 - 120	118
	Cadmium, Cd	mg/kg	0.3	56	50	80 - 120	111
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	97
	Copper, Cu	mg/kg	0.5	54	50	80 - 120	109
	Lead, Pb	mg/kg	1	57	50	80 - 120	114



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable	Metals in Soil/Wa	ste Solids/Materials by ICPOES (continued)				Method:	ME-(AU)-[EN	/JAN040/AN32
Sample Number		Parameter	Units	LOR	Result	Expected	<u> </u>	Recovery %
LB121348.002		Nickel, Ni	mg/kg	0.5	52	50	80 - 120	104
		Zinc, Zn	mg/kg	0.5	56	50	80 - 120	111
TRH (Total Recove	rable Hydrocarbo	ns) in Soli				N	vethod: ME-(A	U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121200.002		TRH C10-C14	mg/kg	20	35	40	60 - 140	88
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	103
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	85
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	36	40	60 - 140	90
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	90
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
VOC's in Soil						N	vethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121220.002	Monocyclic	Benzene	mg/kg	0.1	2.2	2.9	60 - 140	75
	Aromatic	Toluene	mg/kg	0.1	2.6	2.9	60 - 140	88
		Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	90
		m/p-xylene	mg/kg	0.2	5.3	5.8	60 - 140	92
		o-xylene	mg/kg	0.1	2.7	2.9	60 - 140	92
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	5	60 - 140	77
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.9	5	60 - 140	99
		d8-toluene (Surrogate)	mg/kg	-	4.3	5	60 - 140	85
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	5	60 - 140	85
Volatile Petroleum	Hydrocarbons in S	Soil				N	vethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB121220.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	98
		TRH C6-C9	mg/kg	20	20	23.2	60 - 140	87
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		d8-toluene (Surrogate)	mg/kg	-	4.2	5	60 - 140	83
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5	60 - 140	97
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	121



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	od) in Water				Me	thod: ME-(AU)-	ENVJAN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163501.001	LB121371.006	Mercury	mg/L	0.0001	0.0080	<0.0001	0.008	99

#### Mercury in Soil

Mercury in Soil						Met	hod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163524.023	LB121325.004	Mercury	mg/kg	0.05	0.18	<0.05	0.2	88

#### **OC Pesticides in Soil**

OC Pesticides in	Soil						Meth	iod: ME-(AU	)-[ENV]AN420
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163541.045	LB121200.024		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	121
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	125
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	125
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.05	0.25	<0.05	0.2	125
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	123
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	124
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.16	-	104
otal Recoverab	le Metals in Soil/Waste	Solids/Materials	by ICPOES				Method: ME	-(AU)-[ENV	AN040/AN32
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163637.007	LB121348.004		Arsenic, As	mg/kg	3	45	7	50	77

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE163637.007	LB121348.004	Arsenic, As	mg/kg	3	45	7	50	77
		Cadmium, Cd	mg/kg	0.3	37	<0.3	50	74
		Chromium, Cr	mg/kg	0.3	41	8.4	50	65 (9)
		Copper, Cu	mg/kg	0.5	61	25	50	72
		Lead, Pb	mg/kg	1	50	13	50	74
		Nickel, Ni	mg/kg	0.5	48	12	50	72
		Zinc, Zn	mg/kg	0.5	110	73	50	80

VOC's in Soil Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter LOR Result Original Spike Recovery% Units 2.2 SE163523.001 LB121220.004 Monocyclic 0.1 2.9 77 Benzene mg/kg <0.1 2.9 60 Aromatic Toluene 0.1 1.8 <0.1 mg/kg Ethylbenzene mg/kg 0.1 2.2 <0.1 2.9 76 m/p-xylene 0.2 4.9 <0.2 5.8 84 mg/kg 2.5 0.1 <0.1 2.9 86 o-xylene mg/kg Polycyclic Naphthalene mg/kg 0.1 <0.1 <0.1 Surrogates 3.5 4.5 71 Dibromofluoromethane (Surrogate) mg/kg d4-1,2-dichloroethane (Surrogate) 4.8 4.6 97 mg/kg d8-toluene (Surrogate) mg/kg -3.7 3.9 -73



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Sample     Sample Numb       SE163523.001     LB121220.004       SE163549.001     LB121220.025       Se163549.001     LB121220.025								nod: ME-(AU	<u> </u>
SE163523.001 LB12122 SE163549.001 LB12122 Volatile Petroleum Hydrocan QC Sample Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery?
CC Sample     Sample N       E163523.001     LB121220.0       E163549.001     LB121220.0       Sample N     LB121220.0	LB121220.004	Surrogates	Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	3.5	-	94
		Totals	Total Xylenes*	mg/kg	0.3	7.4	<0.3	-	-
			Total BTEX	mg/kg	0.6	14	<0.6	-	-
SE163549.001	LB121220.025	Monocyclic	Benzene	mg/kg	0.1	2.5	<0.1	2.9	87
		Aromatic	Toluene	mg/kg	0.1	2.3	<0.1	2.9	79
			Ethylbenzene	mg/kg	0.1	2.2	<0.1	2.9	77
E163549.001 LB121220.025			m/p-xylene	mg/kg	0.2	4.5	<0.2	5.8	76
			o-xylene	mg/kg	0.1	2.5	<0.1	2.9	84
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.2	-	74
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.5	4.2	-	71
			d8-toluene (Surrogate)	mg/kg	-	3.9	3.9	-	78
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.5	4.2	-	71
		Totals	Total Xylenes*	mg/kg	0.3	7.0	<0.3	-	-
			Total BTEX	mg/kg	0.6	14	<0.6	-	-
/olatile Petroleu	m Hydrocarbons in S	oil					Mett	od: ME-(AU	J)-[ENV]AN43
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE163523.001	LB121220.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	89
			TRH C6-C9	mg/kg	20	<20	<20	23.2	86
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.5	4.5	-	71
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	4.6	-	97
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.9	-	73
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	3.5	-	94
	VPH F	Benzene (F0)	mg/kg	0.1	2.2	<0.1	-	-	
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	117



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



#### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.





# GEOTECHNIQUE PTY I TD

### Laboratory Test Request / Chain of Custody Record

							Tel: (02) 4722 Fax: (02) 4723						Page	1	of	5
TO: PH:	SGS ENV UNIT 16 33 MADD ALEXANE 02 8594 0	IRONMENTAL : OX STREET DRIA NSW 201 400			FAX:	02 8594 049	9	Sampling B		YL		Job No: Project: Location: A	13793/5			
ATTN:	MS EMILY		aile		Come	la tuna										
		Sampling deta		-	Samp	le type		Res	ults real	uired by	: Stan	dard Tur	naround Ti	me		
1.10	Location	Depth (m)	Date	Time	Soil	Material										
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX		KEEP SAMPLE
B	TP50							1	~		-		~		1	YES
2	TP53	0-0.1	23/03/2017	4	SG/SP			1					~		1	YES
34	TP54	0-0.1	23/03/2017		SG/SP			1				1	~		1	YES
	TP55	0-0.15	22/03/2017	-	SG/SP	d =15										YES
5	TP56	0-0.15	22/03/2017	+	SG/SP								~			YES
6	TP57	0-0.15	22/03/2017	-	SG/SP								~			YES
	TP57	0.35-0.45	22/03/2017	÷	SG											YES
B	TP58	0-0.15	22/03/2017		SG											YES
8	TP59	0-0.15	23/03/2017	+	SG/SP			~	~				~	2		YES
	TP59	0.55-0.65	23/03/2017	-	SG	1						. ·	· · · · · · · · · · · · · · · · · · ·	1		YES
9	TP60	0-0.15	23/03/2017	¥.	SG/SP							1	~			YES
	TP60	0.55-0.65	23/03/2017		SG			( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )								YES
10	TP61	0-0.15	23/03/2017		SG/SP	1							~		1	YES
	TP61	0.25-0.35	23/03/2017	4	SG				1			Y				YES
li	Relinguished by					The second			Receive	d by						
1	Name Signature			Date	Name Signature				10/170	Date						
Logord	JOHN XU JX			24/03/2017							23/3/179	1.40	-			
Legend WG WP	G Water sample, glass bottle SG Soil			Soil sample ( Fibro Cemer	glass jar) It Piece (plastic bag)		SP ✓	Soil sample Test require		g)		* Purge & Trap				



# Laboratory Test Request / Chain of Custody Record

1.5

Lemko	CLOSE AV					O Box 880	Tel: (02) 4722 Fax: (02) 4722						Page	2	of 5
TO:	UNIT 16 33 MADD	D RONMENTAL : DX STREET DRIA NSW 201		2	PENRITH	NSW 2751		Sampling B	3y:	JH		Job No: Project:	13793/5	2	_of 5
PH:	02 8594 04				FAX:	02 8594 049	9	Project Mar	nager:	JX		Location: A	Airds		
ATTN:	MS EMILY	YIN Sampling deta	aile	_	Same	ble type		A				N. 1. 5. A.S.W. 1.			
	Location	Depth (m)	Date	Time	Soil	Material		Res	ults req	uired by	Stan	dard Tur	naround Tir	ne	
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX	KEEP SAMPLE
11	TP62	0-0.1	23/03/2017	( <del>-</del> )	SG/SP								~	1	YES
12	TP63	0-0.15	22/03/2017		SG/SP										YES
13	TP64	0-0.15	22/03/2017	-	SG/SP					1					YES
14	TP65	0-0.15	22/03/2017	<del>.</del>	SG/SP			-	-			ti			YES
15	TP66	0-0.15	22/03/2017	-	SG/SP		Service -								YES
•	TP67	0-0.15	22/03/2017	÷	SG/SP						-				YES
K	TP68	0-0.15	22/03/2017	-	SG/SP			~	1			~			YES
	TP68	0.35-0.45	22/03/2017		SG	1									YES
17	TP69	0-0.15	22/03/2017		SG/SP					1	P	·	~		YES
	TP69	0.55-0.65	22/03/2017	-	SG										YES
18	TP70	0-0.15	22/03/2017		SG/SP								~		YES
	TP70	0.45-0.55	22/03/2017		SG				-					i	YES
19	TP71	0-0.15	23/03/2017	-	SG	1						~			YES
25	TP72	0-0.15	22/03/2017		SG/SP								~		YES
	TP72	0.55-0.65	22/03/2017		SG										YES
	Relinquished by									Received					
-	Name Signature			Date						Date					
Legend.				Culture	24/03/2017	1	00	Celleanste		-1		Duran & Tran			
WG WP	Water sample, glass bottle     SG       Water sample, plastic bottle     FCP				Soil sample ( Fibro Cemer	glass jar) t Piece (plastic bag)		SP ✓	Soil sample Test require		9)		Purge & Trap		



## Laboratory Test Request / Chain of Custody Record

Lemko	Place TH NSW 275	0				O Box 880	Tel: (02) 4722 Fax: (02) 4723						Page	3	of	5
TO:	SGS ENV UNIT 16 33 MADD	RONMENTAL : OX STREET ORIA NSW 201						Sampling B	y:	JH		Job No: Project:	13793/5			
PH:	02 8594 04	400			FAX:	02 8594 049	9	Project Mar	ager:	JX		Location: A	Airds			
ATTN:	MS EMILY	Sampling deta	aile		Same	ole type		-								
		Sampling deta		1 2 2 2 2 3	Jan	ne type		Res	ults requ	uired by	: Stan	dard Tur	naround Tir	ne		
	Location	Depth (m)	Date	Time	Soil	Material				10 10 10 CM						
							Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	РАН	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX		KEEP SAMPLE
21	TP73	0-0.15	22/03/2017	1000-000	SG/SP	· · · · · · · · · · · · · · · · · · ·							~			YES
	TP73	0.45-0.55	22/03/2017		SG						1.000					YES
22	TP74	0-0.15	22/03/2017		SG/SP	· · · · · ·					1	2	1		1	YES
	TP75	0-0.15	22/03/2017	5 - 1 A I.S.	SG/SP			-				· · · · · · · · · · · · · · · · · · ·			1	YES
23	TP76	0-0.1	23/03/2017		SG/SP	1		~	~		1	~	1		1	YES
24	TP77	0-0.1	22/03/2017		SG/SP				-		1		~		1	YES
25	TP78	0-0.15	23/03/2017		SG/SP								ü			YES
	TP78	0.35-0.45	23/03/2017	Line all	SG						1000					YES
26	TP79	0-0.15	23/03/2017	124-11	SG/SP										1.	YES
27	TP80	0-0.15	23/03/2017	1.012.01	SG/SP			~	~			~				YES
28	TP80	0.5-0.7	23/03/2017	Poet 1	SG/SP					1			~			YES
	TP80	0.75-0.85	23/03/2017	12.24	SG											YES
29	TP81	0-0.15	23/03/2017		SG								A			YES
30	TP82	0-0.15	23/03/2017		SG	1				11	(CHOC)					YES
31	TP83	0-0.15	22/03/2017	-	SG				1	1		1.0.1.0.1.0.0			N	YES
	Relinquished by									Received						
	Name Signature			Date					Signatu	re		Date	L I			
Legens	JOHN XU JX JX			24/03/2017	1			· · · · ·								
WG WP	and the second				Soil sample ( Fibro Cemer	glass jar) t Piece (plastic bag)	Č – S	SP ✓	Soil sample Test require	George and	g)		Purge & Trap			



## Laboratory Test Request / Chain of Custody Record

Lemko Place PENRITH NSW 2750					O Box 880 NSW 2751	Tel: (02) 4722 Fax: (02) 4722						Page	4	of	5
TO: SGS ENVI UNIT 16 33 MADDO	RONMENTAL DX STREET RIA NSW 201			FAX:	02 8594 049	9	Sampling B Project Mar		Yr Hf		Job No: Project: Location: A	13793/5	4		<u> </u>
ATTN: MS EMILY		n.		1 0		a na ser a ser	1000				-				
	Sampling deta			Samp	ole type		Res	ults reau	ired by	Stan	dard Tur	naround Tir	no		
Location	Depth (m)	Date	Time	Soil	Material		nco.	and requ	uncu by	. otan		narouna m	ne		
						Metals As, Cd, Cr, Cu, Pb, Hg, Ni and Zn	TPH* & BTEX	PAH	ОСР	РСВ	pH, CEC	ASBESTOS 0.001% w/w	BTEX	SAI	EEP MPLE
32 TP84	0-0.15	22/03/2017	(4) ( <del>4</del> ) (4)	SG/SP					1		~	1	-	and the second sec	YES
33 TP84	0.5-0.8	22/03/2017	1.14	SG/SP								~			YES
34 TP84	1.0-1.3	22/03/2017	3	SG/SP	1		1		1	1	1	~			YES
35 TP84	1.5-1.8	22/03/2017	- A.	SG/SP								1			YES
TP84	2.05-2.15	22/03/2017		SG											YES
36 TP85	0-0.15	23/03/2017	1.00	SG/SP			1	£			1	~			YES
TP85	0.35-0.45	23/03/2017	-	SG											YES
37 TP86	0-0.15	23/03/2017	-	SG											YES
3S X7		22/03/2017	226.2	SG										Y	YES
39 X8		22/03/2017	le le	SG										Y	YES
45 X9		22/03/2017	1.14	SG										Y	YES
41 Rinsate R3	11.0	22/03/2017		1	WG/Vial	1				-				- Y	YES
42 Rinsate R4	1	23/03/2017		· · · · · · · · · · · · · · · · · · ·	WG/Vial	~								- Y	YES
43 Tripspike TS3									6				~	Y	YES
44 Tripspike TS4									1.1	1	·		~	Y	YES
	Relinquished by										Received				
Name						Date		Name			Signatu	re		Date	
	JOHN XU JX				4	24/03/2017	1								
	end: Water sample, glass bottle Water sample, plastic bottle			SG FCP	Soil sample Fibro Cemer	(glass jar) ht Piece (plastic bag)	1	SP ✓	Soil sample Test require	Here Breeze a	g)	*	Purge & Trap		



### SGS ENVIRONMENTAL SERVICES

Sampling Date:	22 & 23/3/2017	Job No:	13793/5
Sampled by:	JH		
Project Manager:	JX	Location:	Airds
Results Required by:	Standard Turnaround	d Time	

		F	Page 7 o	f 7
Composite	Sub-Samples	A	nalyte	
Sample	and the second	Metals	OCP	PCE
45 C617	TP50 (0-0.1m) + TP53 (0-0.1m) + TP54 (0-0.1m)	~	~	~
46 C618	TP55 (0-0.15m) + TP62 (0-0.1m) + TP63 (0-0.15)	~	~	~
+7 C619	TP56 (0-0.15m) + TP57 (0-0.15m) + TP58 (0-0.15m)	~	~	~
48 C620	TP59 (0-0.15m) + TP60 (0-0.15m) + TP81 (0-0.15m)	~	~	
4 C621	TP64 (0-0.15m) + TP66 (0-0.15m) + TP74 (0-0.15m)	~	~	
SO C622	TP65 (0-0.15m) + TP76 (0-0.1m) + TP78 (0-0.1m)	~	~	~
SI C623	TP68 (0-0.15m) + 7469 (0-0.15m) + 7470 (0-0.15m)	~	~	
Sz C624	TRA1 (0-0.15m) + TP79 (0-0.15m) + TP83 (0-0.15m)	~	1000	e.
53 C625	TP72 (0-0.15m) + TP73 (0-0.15m) + TP80 (0-0.15m)	~	~	~
51 C626	TPZ7 (0-0.1m) + TP84 (0-0.15m) + TP85 (0-0.15m)	~	*	~
55 C627	TP87 (0-0.15m) + 7982 (0-0.15m) + 7986 (0-0.15m)	~	~	-
<b>%</b> C628	TP84 (0.5-0.8m) + TP84 (1.0-1.3m) + TP84 (1.5-1.8m)	~	-	-
Duplicate CD3	X7 + X8 + X9		~	-

v Test required

Metals include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) OCP = Organochlorine Pesticides PCB: Polychlorinated Biphenyls

JX 24/3/2017 (JOHN XU) Geotechnique Pty Ltd

.



CLIENT DETAIL	S	LABORATORY DETA	ILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13793-5 Airds	Samples Received	Thu 23/3/2017	
Order Number	(Not specified)	Report Due	Fri 31/3/2017	
Samples	57	SGS Reference	SE163541	

_ SUBMISSION DETAILS

This is to confirm that 57 samples were received on Thursday 23/3/2017. Results are expected to be ready by Friday 31/3/2017. Please quote SGS reference SE163541 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 24/3/17@3:08pm Yes 11.3°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 42 Soil, 2 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

15 soil samples have been placed on hold.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at <a href="http://www.sgs.com/en/terms-and-conditions">http://www.sgs.com/en/terms-and-conditions</a> as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



#### CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

- SUMMARY	OF ANALYSIS		1		1		
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP50 0-0.1	13	26	1	10	12	8
007	TP58 0-0.15	13	-	1	-	-	-
008	TP59 0-0.15	13	26	1	10	12	8
016	TP68 0-0.15	13	26	1	10	12	8
019	TP71 0-0.15	13	-	1	-	-	-
023	TP76 0-0.15	13	26	1	10	12	8

_ CONTINUED OVERLEAF



#### CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

		ns and pacity	_	omatic			able		_
No.	Sample ID	Exchangeable Cations and Cation Exchange Capacity	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
027	TP80 0-0.15	13	-	26	-	1	10	12	8
029	TP81 0-0.15	13	-	-	-	1	-	-	-
032	TP84 0-0.15	13	-	-	-	1	-	-	-
043	Tripspike TS3	-	-	-	-	-	-	12	-
044	Tripspike TS4	-	-	-	-	-	-	12	-
045	C617	-	28	-	11	-	-	-	-
046	C618	-	28	-	11	-	-	-	-
047	C619	-	28	-	11	-	-	-	-
048	C620	-	28	-	11	_	-	-	_

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



___ CLIENT DETAILS ___

### SAMPLE RECEIPT ADVICE

Client Ge	eotechnique			Project	13793-5 Airds
SUMMARY	OF ANALYSIS				
No.	Sample ID	OC Pesticides in Soil	PCBs in Soil		
049	C621	28	-		
050	C622	28	11		
051	C623	28	11		
053	C625	28	11		
054	C626	28	11		
055	C627	28	-		
057	Duplicate CD3	28	-		

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



CLIENT DETAILS . Client Geotechnique Project 13793-5 Airds SUMMARY OF ANALYSIS Gravimetric Determination of Asbestos in Soil Moisture Content Sample ID No. 9 1 001 TP50 0-0.1 9 002 TP53 0-0.1 -9 -003 TP54 0-0.1 005 9 TP56 0-0.15 -006 TP57 0-0.15 9 -007 TP58 0-0.15 -1 9 1 008 TP59 0-0.15 9 009 TP60 0-0.15 -9 010 -TP61 0-0.15 9 011 -TP62 0-0.1 016 TP68 0-0.15 9 1 017 TP69 0-0.15 9 -9 018 TP70 0-0.15 -019 TP71 0-0.15 -1 020 9 TP72 0-0.15 -021 TP73 0-0.15 9 -023 TP76 0-0.15 9 1 024 TP77 0-0.1 9 _

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . _ CONTINUED OVERLEAF



CLIENT DETAILS

Client Geotechnique

Project 13793-5 Airds

UMMARY	OF ANALYSIS						
No.	Sample ID	Gravimetric Determination of Asbestos in Soil	Mercury (dissolved) in Water	Mercury in Soil	Metals in Water (Dissolved) by ICPOES	Moisture Content	Total Recoverable Metals in Soil/Waste
025	TP78 0-0.15	9	-	-	-	-	-
027	TP80 0-0.15	9	-	-	-	1	-
028	TP80 0.5-0.7	9	-	-	-	-	-
029	TP81 0-0.15	-	-	-	-	1	-
032	TP84 0-0.15	9	-	-	-	1	-
033	TP84 0.5-0.8	9	-	-	-	-	-
034	TP84 1.0-1.3	9	-	-	-	-	-
035	TP84 1.5-1.8	9	-	-	-	-	-
036	TP85 0-0.15	9	-	-	-	-	-
041	Rinsate R3	-	1	-	7	-	-
042	Rinsate R4	-	1	-	7	-	-
045	C617	-	-	1	-	1	7
046	C618	-	-	1	-	1	7
047	C619	-	-	1	-	1	7
048	C620	-	-	1	-	1	7

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

28/03/2017



CLIENT DETAILS

Client Geotechnique

- SUMMARY OF ANALYSIS

Project 13793-5 Airds

No.	Sample ID	Mercury in Soil	Moisture Content	Total Recoverable Metals in Soil/Waste
049	C621	1	1	7
050	C622	1	1	7
051	C623	1	1	7
052	C624	1	1	7
053	C625	1	1	7
054	C626	1	1	7
055	C627	1	1	7
056	C628	1	1	7
057	Duplicate CD3	1	1	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



### **ANALYTICAL REPORT**



Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163541A R0
Order Number	(Not specified)	Date Received	5/4/2017
Samples	57	Date Reported	10/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Bennet Lo Senior Organic Chemist/Metals Chemist

kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



### **ANALYTICAL RESULTS**

### SE163541A R0

### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 10/4/2017

			TP55 0-0.15	TP62 0-0.1	TP63 0-0.15	TP64 0-0.15	TP66 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			22/3/2017			22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541A.004	SE163541A.011	SE163541A.012	SE163541A.013	SE163541A.015
Copper, Cu	mg/kg	0.5	-	-	-	15	11
Nickel, Ni	mg/kg	0.5	8.7	7.7	6.7	6.4	9.8

			TP74 0-0.15
			SOIL
			- 22/3/2017
PARAMETER	UOM	LOR	SE163541A.022
Copper, Cu	mg/kg	0.5	13
Nickel, Ni	mg/kg	0.5	14



### ANALYTICAL RESULTS

### SE163541A R0

### Moisture Content [AN002] Tested: 7/4/2017

			TP55 0-0.15	TP62 0-0.1	TP63 0-0.15	TP64 0-0.15	TP66 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			22/3/2017			22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541A.004	SE163541A.011	SE163541A.012	SE163541A.013	SE163541A.015
% Moisture	%w/w	0.5	15	17	24	21	23

			TP74 0-0.15
			SOIL
			22/3/2017
PARAMETER	UOM	LOR	SE163541A.022
% Moisture	%w/w	0.5	25



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

#### FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



### STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds Additional	SGS Reference	SE163541A R0
Order Number	(Not specified)	Date Received	05 Apr 2017
Samples	57	Date Reported	10 Apr 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

Moisture Content

6 items

Samples clearly labelled		Yes	Complete of	ocumentation received		Yes	
Sample container provider		SGS	Sample co	oling method		Ice Bricks	
Samples received in correct of	containers	Yes	Sample co	ints by matrix		6 Soil	
Date documentation received	l	5/4/17@9:4	47am Type of do	cumentation received		Email	
Samples received in good order		Yes	Samples received without headspace			Yes	
Sample temperature upon re-	ceipt	11.3°C	11.3°C Sufficient sample for analysis			Yes	
Turnaround time requested		Standard					
SGS Australia Pty Ltd	Environment, Hea	Ith and Safety	Unit 16 33 Maddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC

Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499



### HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Moisture Content Method: ME-(AU)-[ENV]AN002 Sample Name Sample No. QC Ref Sampled Analysis Due Analysed Received Extraction Due Extracted TP55 0-0.15 SE163541A.004 LB121957 22 Mar 2017 05 Apr 2017 05 Apr 2017 07 Apr 2017† 12 Apr 2017 10 Apr 2017 TP62 0-0.1 SE163541A.011 LB121957 23 Mar 2017 05 Apr 2017 06 Apr 2017 07 Apr 2017† 12 Apr 2017 10 Apr 2017 TP63 0-0.15 SE163541A.012 LB121957 22 Mar 2017 05 Apr 2017 05 Apr 2017 07 Apr 2017† 12 Apr 2017 10 Apr 2017 07 Apr 2017† TP64 0-0.15 SE163541A.013 LB121957 22 Mar 2017 05 Apr 2017 05 Apr 2017 12 Apr 2017 10 Apr 2017 TP66 0-0.15 SE163541A.015 LB121957 22 Mar 2017 05 Apr 2017 05 Apr 2017 07 Apr 2017+ 12 Apr 2017 10 Apr 2017 TP74 0-0.15 SE163541A.022 LB121957 22 Mar 2017 05 Apr 2017 05 Apr 2017 07 Apr 2017† 12 Apr 2017 10 Apr 2017 Method: ME-(AU)-[ENV]AN040/AN320

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP55 0-0.15	SE163541A.004	LB121985	22 Mar 2017	05 Apr 2017	18 Sep 2017	10 Apr 2017	18 Sep 2017	10 Apr 2017
TP62 0-0.1	SE163541A.011	LB121985	23 Mar 2017	05 Apr 2017	19 Sep 2017	10 Apr 2017	19 Sep 2017	10 Apr 2017
TP63 0-0.15	SE163541A.012	LB121985	22 Mar 2017	05 Apr 2017	18 Sep 2017	10 Apr 2017	18 Sep 2017	10 Apr 2017
TP64 0-0.15	SE163541A.013	LB121985	22 Mar 2017	05 Apr 2017	18 Sep 2017	10 Apr 2017	18 Sep 2017	10 Apr 2017
TP66 0-0.15	SE163541A.015	LB121985	22 Mar 2017	05 Apr 2017	18 Sep 2017	10 Apr 2017	18 Sep 2017	10 Apr 2017
TP74 0-0.15	SE163541A.022	LB121985	22 Mar 2017	05 Apr 2017	18 Sep 2017	10 Apr 2017	18 Sep 2017	10 Apr 2017



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



### **METHOD BLANKS**

### SE163541A R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES			Method: M	E-(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR	Result
LB121985.001	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni		0.5	<0.5



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Moisture Content			Meth	od: ME-(AU)-	(ENVJAN00			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163829.004	LB121957.011	% Moisture	%w/w	0.5	6.918238993	76.6371681415	45	4
SE163902.002	LB121957.022	% Moisture	%w/w	0.5	15.263157894	74.8394241417	37	3
SE163902.006	LB121957.027	% Moisture	%w/w	0.5	11.243243243	21.9153674832	39	6

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN32				
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %	
SE163541A.004	LB121985.014	Nickel, Ni	mg/kg	0.5	8.7	8.8	36	1	
SE163541A.022	LB121985.020	Copper, Cu	mg/kg	0.5	13	11	34	12	
		Nickel, Ni	mg/kg	0.5	14	12	34	15	



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soli/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN3							
Sample Number	Parameter	Uni	ts LOR	Result	Expected	Criteria %	Recovery %
LB121985.002	Copper, Cu	mg/kg	0.5	48	50	80 - 120	95
	Nickel, Ni	mg/kg	g 0.5	49	50	80 - 120	97



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable Metals in Soli/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]						AN040/AN320		
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164016.001	LB121985.004	Copper, Cu	mg/kg	0.5	55	8.34669394960	50	93
		Nickel, Ni	mg/kg	0.5	50	5.31920237522	50	89



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



#### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



# GEOTECHNIQUE PTY I TD

# Laboratory Test Request / Chain of Custody Record

PENF	o Place NTH NSW 275	50		P		P O Box 880 NSW 2751	Tel: (02) 47 Fax: (02) 47	722 6161		Page	1 of	1
TO:	UNIT 16 33 MADD ALEXANI	IRONMENTAL S OX STREET DRIA NSW 201						Sampling By:	JH	Job No: 13793/5 Project:		
PH:	02 8594 0	400			FAX:	02 8594 0499		Project Manager:	JX	Location: Airds		
ATTN	: MS EMIL	a based on a base of the second se										
-		Sampling deta	ails		Sam	ple type	Doc	ulte required by	v: Tuosday	11/04/2017 (Standard Turnarou	nd Time)	
	Location	Depth (m)	Date	Time	Soil	Material	Res	uits required by		Ref. SE163541	na rine)	
							Cu,	Ni				KEEP SAMPLE
4	TP55	0-0.15	23/03/2017	0.00	SG			~				YES
11	TP62	0-0.1	23/03/2017	-	SG			~				YES
12	TP63	0-0.15	22/03/2017	-	SG	4						YES
13	TP64	0-0.15	22/03/2017	-	SG		~	~		SGS EHS Alexandria Laboratory	Sec. 1.	YES
15	TP66	0-0.15	22/03/2017		SG		~	~				YES
22	TP74	0-0.15	22/03/2017		SG		1					YES
												1
												· · · · · · · · · · · · · · · · · · ·
		- I								SE163541A COC		1
										Received: 05 – Apr – 2017		
1.1						100						
			) (									
-												-
										Development		-
	Name		Reli	nquished			Date	Ne	ame	Received by Signature	Date	
-	JOHN 2			Signat JX			5/04/2017		isho	Signature	Date	
Leger				JA		4-	510412011	- A. OO				
WG WP	Water sar	nple, glass bottle nple, plastic bott			SG FCP	Soil sample (gla	ss jar) ece (plastic bag)	SP ✓	Soil sample Test require		& Trap	



# SAMPLE RECEIPT ADVICE

CLIENT DETAILS	5	LABORATORY DETA	ILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 4722 2700	Telephone	+61 2 8594 0400	
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project	13793-5 Airds Additional	Samples Received	Wed 5/4/2017	
Order Number	(Not specified)	Report Due	Tue 11/4/2017	
Samples	57	SGS Reference	SE163541A	

_ SUBMISSION DETAILS

This is to confirm that 57 samples were received on Wednesday 5/4/2017. Results are expected to be ready by Tuesday 11/4/2017. Please quote SGS reference SE163541A when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 5/4/17@9:47am Yes 11.3°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 6 Soil Email Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



CLIENT DETAILS .

022

TP74 0-0.15

# SAMPLE RECEIPT ADVICE

#### Client Geotechnique Project 13793-5 Airds Additional SUMMARY OF ANALYSIS Total Recoverable Metals in Soil/Waste Moisture Content No. Sample ID 1 004 TP55 0-0.15 1 1 1 011 TP62 0-0.1 1 1 012 TP63 0-0.15 2 013 TP64 0-0.15 1 015 TP66 0-0.15 1 2

1

2

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# **ANALYTICAL REPORT**



ontact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds - Additional	SGS Reference	SE163541B R0
Order Number	(Not specified)	Date Received	13/4/2017
Samples	57	Date Reported	19/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Kamrul Ahsan Senior Chemist

Kinty

Ly Kim Ha Organic Section Head

ronz

Shane McDermott Senior Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



# **ANALYTICAL RESULTS**

# SE163541B R0

#### Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 18/4/2017

			TP81 0-0.15	TP82 0-0.15	TP84 0.5-0.8	TP84 1.0-1.3	TP84 1.5-1.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017			22/3/2017	22/3/2017
PARAMETER	UOM	LOR	SE163541B.029	SE163541B.030	SE163541B.033	SE163541B.034	SE163541B.035
Nickel, Ni	mg/kg	0.5	8.0	14	9.2	12	8.4

			TP86 0-0.15
			SOIL
			23/3/2017
PARAMETER	UOM	LOR	SE163541B.037
Nickel, Ni	mg/kg	0.5	8.0



# SE163541B R0

#### Moisture Content [AN002] Tested: 13/4/2017

			TP82 0-0.15	TP84 0.5-0.8	TP84 1.0-1.3	TP84 1.5-1.8	TP86 0-0.15
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/3/2017			22/3/2017	23/3/2017
PARAMETER	UOM	LOR	SE163541B.030	SE163541B.033	SE163541B.034	SE163541B.035	SE163541B.037
% Moisture	%w/w	1	26.0	23.7	18.7	17.6	27.7



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

#### FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	·	LABORATORY DETAI	LS
Contact	John Xu	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	13793-5 Airds - Additional	SGS Reference	SE163541B R0
Order Number	(Not specified)	Date Received	13 Apr 2017
Samples	57	Date Reported	19 Apr 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date

Moisture Content

5 items

Sample container providerSGSSample cooling methodIce BricksSamples received in correct containersYesSample counts by matrix6 SoilDate documentation received13/4/17@11:53Type of documentation receivedCOCSamples received in good orderYesSamples received without headspaceYesSample temperature upon receipt11.3°CSufficient sample for analysisYesTurnaround time requestedTwo DaysTwo DaysTwo Days	Samples clearly labelled	Yes	Complete documentation received	Yes	
Date documentation received13/4/17@11:53Type of documentation receivedCOCSamples received in good orderYesSamples received without headspaceYesSample temperature upon receipt11.3 °CSufficient sample for analysisYes	Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in good orderYesSamples received without headspaceYesSample temperature upon receipt11.3°CSufficient sample for analysisYes	Samples received in correct containers	Yes	Sample counts by matrix	6 Soil	
Sample temperature upon receipt         11.3°C         Sufficient sample for analysis         Yes	Date documentation received	13/4/17@11:53	Type of documentation received	COC	
	Samples received in good order	Yes	Samples received without headspace	Yes	
Turnaround time requested Two Days	Sample temperature upon receipt	11.3°C	Sufficient sample for analysis	Yes	
	Turnaround time requested	Two Days			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Australia Alexandria NSW 2015 Australia

t +61 2 8594 0400

www.sgs.com.au f +61 2 8594 0499



# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content							Method:	ME-(AU)-[ENV]ANO
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP82 0-0.15	SE163541B.030	LB122381	23 Mar 2017	13 Apr 2017	06 Apr 2017	13 Apr 2017†	18 Apr 2017	18 Apr 2017
TP84 0.5-0.8	SE163541B.033	LB122381	22 Mar 2017	13 Apr 2017	05 Apr 2017	13 Apr 2017†	18 Apr 2017	18 Apr 2017
TP84 1.0-1.3	SE163541B.034	LB122381	22 Mar 2017	13 Apr 2017	05 Apr 2017	13 Apr 2017†	18 Apr 2017	18 Apr 2017
TP84 1.5-1.8	SE163541B.035	LB122381	22 Mar 2017	13 Apr 2017	05 Apr 2017	13 Apr 2017†	18 Apr 2017	18 Apr 2017
TP86 0-0.15	SE163541B.037	LB122381	23 Mar 2017	13 Apr 2017	06 Apr 2017	13 Apr 2017†	18 Apr 2017	18 Apr 2017
Total Recoverable Metals	in Soil/Waste Solids/Materia	als by ICPOES					Method: ME-(AU	J)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP81 0-0.15	SE163541B.029	LB122426	23 Mar 2017	13 Apr 2017	19 Sep 2017	18 Apr 2017	19 Sep 2017	19 Apr 2017
TP82 0-0.15	SE163541B.030	LB122426	23 Mar 2017	13 Apr 2017	19 Sep 2017	18 Apr 2017	19 Sep 2017	19 Apr 2017
TP84 0.5-0.8	SE163541B.033	LB122426	22 Mar 2017	13 Apr 2017	18 Sep 2017	18 Apr 2017	18 Sep 2017	19 Apr 2017
TP84 1.0-1.3	SE163541B.034	LB122426	22 Mar 2017	13 Apr 2017	18 Sep 2017	18 Apr 2017	18 Sep 2017	19 Apr 2017
TP84 1.5-1.8	SE163541B.035	LB122426	22 Mar 2017	13 Apr 2017	18 Sep 2017	18 Apr 2017	18 Sep 2017	19 Apr 2017
TP86 0-0.15	SE163541B.037	LB122426	23 Mar 2017	13 Apr 2017	19 Sep 2017	18 Apr 2017	19 Sep 2017	19 Apr 2017



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.



# **METHOD BLANKS**

Method: ME-(AU)-[ENV]AN040/AN320

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Sa	mple Number	Parameter	Units	LOR	Result
	122426.001	Nickel, Ni	mg/kg	0.5	<0.5



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Moisture Content

Moisture Content	foisture Content Method: ME-(AU)-[ENV]AN002							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164047.008	LB122381.033	% Moisture	%w/w	1	29.469790382	32.7205882352	33	10
SE164065.006	LB122381.044	% Moisture	%w/w	1	12.182741116	8.4158415841	40	37
SE164065.016	LB122381.055	% Moisture	%w/w	1	21.115973741	2.5776965265	35	7
SE164065.026	LB122381.066	% Moisture	%w/w	1	31.228070175	82.7455919395	33	5
SE164119.002	LB122381.072	% Moisture	%w/w	1	17.748091603	9.0857142857	35	7
SE164161.008	LB122381.022	% Moisture	%w/w	1	6.3636363636	6.3291139240	46	1
SE164220.005	LB122381.011	% Moisture	%w/w	1	18.6495176848	6.8817204301	36	10
Total Recoverable M	letals in Soil/Waste Solids/Materials by	ICPOES				Method: ME-	(AU)-[ENV]AI	N040/AN320
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163541B.035	LB122426.014	Nickel, Ni	mg/kg	0.5	8.4	8.2	36	2
SE164162.008	LB122426.024	Nickel, Ni	mg/kg	0.5	12.921291981	4.2197071406	34	10



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable Metals in S	oil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122426.002	Nickel, Ni	mg/kg	0.5	43	50	80 - 120	87



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Total Recoverable	e Metals in Soil/Waste Solids	Materials by ICPOES				Method: ME-	(AU)-[ENV	JAN040/AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164148.001	LB122426.004	Nickel, Ni	mg/kg	0.5	48	0.41630879773	50	95



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



#### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ^④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.





# GEOTECHNIQUE PTY I TD

# Laboratory Test Request / Chain of Custody Record

	TH NSW 275			F		P O Box 880 NSW 2751	Tel: (02) 472 Fax: (02) 472	22 6161			Page	1	of	1
TO: PH:	UNIT 16 33 MADD	IRONMENTAL S OX STREET DRIA NSW 201 400			FAX:	02 8594 0499		Sampling By: Project Manager:	JK	Job No: Project: Location:	13793/5 Airds			
ATTN:	MS EMILY	Y YIN Sampling deta			Com	ple type								
	Location	Depth (m)	Date	Time	Soil	Material		Results		by: 19/04/201				
									SGS	Ref. SE16354	1			
							Ni							KEEP SAMPLE
29	TP81	0-0.15	23/03/2017	1.79.1.1	SG	1	$\checkmark$			1 1			11.	YES
30	TP82	0-0.15	23/03/2017	0.000	SG		~						1	YES
33	TP84	0.5-0.8	22/03/2017	-	SG		~							YES
34	TP84	1.0-1.3	22/03/2017		SG		~							YES
35	TP84	1.5-1.8	22/03/2017	e	SG		$\checkmark$							YES
37	TP86	0-0.15	23/03/2017	-	SG		<b>√</b>							YES
		-	-										-	
-		1	Reli	nquished	by	1				Receiv	ed by			
	Name		T(C)	Signat		1	Date	Name		Signa			Date	
	JOHN X		1.0	JX			13/04/2017		-					
Legend WG WP	Water san	nple, glass bottle nple, plastic bott			SG FCP	Soil sample (gla Fibro Cement F	ass jar) Piece (plastic bag)	SP ✓	Soil sample Test require	(plastic bag) ed		Purge & Trap		



# SAMPLE RECEIPT ADVICE

CLIENT DETAILS	5	LABORATORY DETA	ILS	
Contact	John Xu	Manager	Huong Crawford	
Client	Geotechnique	Laboratory	SGS Alexandria Environmental	
Address	P.O. Box 880 PENRITH NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone Facsimile	02 4722 2700 02 4722 6161	Telephone Facsimile	+61 2 8594 0400 +61 2 8594 0499	
Email	john.xu@geotech.com.au	Email	au.environmental.sydney@sgs.com	
Project Order Number Samples	<b>13793-5 Airds - Additional</b> (Not specified) 57	Samples Received Report Due SGS Reference	Thu 13/4/2017 Wed 19/4/2017 <b>SE163541B</b>	

_ SUBMISSION DETAILS

This is to confirm that 57 samples were received on Thursday 13/4/2017. Results are expected to be ready by Wednesday 19/4/2017. Please quote SGS reference SE163541B when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 13/4/17@11:53 Yes 11.3°C Two Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 6 Soil COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t Australia f

t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au



CLIENT DETAILS .

037

TP86 0-0.15

# SAMPLE RECEIPT ADVICE

#### Client Geotechnique Project 13793-5 Airds - Additional SUMMARY OF ANALYSIS Total Recoverable Metals in Soil/Waste Moisture Content No. Sample ID 1 029 TP81 0-0.15 -1 1 030 TP82 0-0.15 1 1 033 TP84 0.5-0.8 034 TP84 1.0-1.3 1 1 035 TP84 1.5-1.8 1 1

1

1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

164078

Client: Geotechnique Pty Ltd PO Box 880 Penrith NSW 2751

Attention: John Xu

## Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

# 13793/5 , Airds 9 Soils, 3 Composites 22/03/17 / 24/03/17

#### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

**CERTIFICATE OF ANALYSIS** 

#### **Report Details:**

 Date results requested by: / Issue Date:
 31/03/17
 / 30/03/17

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

## **Results Approved By:**

David Springer General Manager

ACCREDITED FOR TECHNICAL

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	164078-1
Your Reference		Z1
	-	
Composite Reference		-
Date Sampled		20/03/2017
Type of sample		Soil
Date extracted	-	27/03/2017
Date analysed	-	28/03/2017
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	88

13	793	/5.	Airds
		,	/

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	164078-1
Your Reference		Z1
	-	
Composite Reference		-
Date Sampled		20/03/2017
Type of sample		Soil
Date extracted	-	27/03/2017
Date analysed	-	28/03/2017
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Total+veTRH(>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	98

PAHs in Soil		
Our Reference:	UNITS	164078-1
Your Reference		Z1
Composite Reference		-
Date Sampled		20/03/2017
Type of sample		Soil
Date extracted	-	27/03/2017
Date analysed	-	28/03/2017
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total +ve PAH's	mg/kg	<0.05
Surrogate p-Terphenyl-d14	%	121

<b></b>			
Organochlorine Pesticides in soil			
Our Reference:	UNITS	164078-10	164078-12
Your Reference		SplitCS1	Split CS3
Composite Reference	-	1+2+3	7+8+9
Date Sampled		20/03/2017	22/03/2017
Type of sample		Soil	Soil
Date extracted	_	27/03/2017	27/03/2017
Date analysed	-	27/03/2017	27/03/2017
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Surrogate TCMX	%	96	97

PCBs in Soil		
Our Reference:	UNITS	164078-10
Your Reference		Split CS1
	-	
Composite Reference		1+2+3
Date Sampled		20/03/2017
Type of sample		Soil
Date extracted	-	27/03/2017
Date analysed	-	27/03/2017
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCLMX	%	96

Acid Extractable metals in soil				
Our Reference:	UNITS	164078-10	164078-11	164078-12
Your Reference		SplitCS1	Split CS2	Split CS3
	-			
Composite Reference		1+2+3	4+5+6	7+8+9
Date Sampled		20/03/2017	21/03/2017	22/03/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	27/03/2017	27/03/2017	27/03/2017
Date analysed	-	27/03/2017	27/03/2017	27/03/2017
Arsenic	mg/kg	6	9	7
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	10	18	11
Copper	mg/kg	20	71	21
Lead	mg/kg	23	32	21
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	6	17	8
Zinc	mg/kg	48	290	56

Moisture					
Our Reference:	UNITS	164078-1	164078-10	164078-11	164078-12
Your Reference		Z1	Split CS1	Split CS2	Split CS3
Composite Reference Date Sampled Type of sample		- 20/03/2017 Soil	1+2+3 20/03/2017 Soil	4+5+6 21/03/2017 Soil	7+8+9 22/03/2017 Soil
Date prepared	-	27/03/2017	27/03/2017	27/03/2017	27/03/2017
Date analysed	-	28/03/2017	28/03/2017	28/03/2017	28/03/2017
Moisture	%	17	13	25	22

# Client Reference: 13793/5 , Airds

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
	Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXN in Soil					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			27/03/2 017	[NT]	[NT]	LCS-1	27/03/2017
Date analysed	_			28/03/2 017	[NT]	[NT]	LCS-1	28/03/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	94%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	94%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	93%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	97%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	94%
m+p-xylene	mg/kg	2	Org-016	<2	[NT]	[NT]	LCS-1	94%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	95%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	76	[NT]	[NT]	LCS-1	86%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			27/03/2 017	[NT]	[NT]	LCS-1	27/03/2017
Date analysed	-			27/03/2 017	[NT]	[NT]	LCS-1	27/03/2017
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	101%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	102%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	103%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	101%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	102%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	103%
Surrogate o-Terphenyl	%		Org-003	102	[NT]	[NT]	LCS-1	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			27/03/2 017	[NT]	[NT]	LCS-4	27/03/2017
Date analysed	-			28/03/2 017	[NT]	[NT]	LCS-4	28/03/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-4	122%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-4	120%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-4	124%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-4	128%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-4	126%
Benzo(a)anthracene	mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	LCS-4	119%
Benzo(b,j+k) fluoranthene	mg/kg	0.1	Org-012 Org-012	<0.1	[NT]	[NT]	[NR]	[NR]

		Clie	ent Reference	ce: 13	3793/5,Aird	s	_	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil					Sil#	Base II Duplicate II % RPD		Recovery
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-4	121%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	92	[NT]	[NT]	LCS-4	87%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		
Date extracted	-			27/03/2 017	[NT]	[NT]	LCS-3	27/03/2017
Date analysed	-			27/03/2 017	[NT]	[NT]	LCS-3	27/03/2017
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	89%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	93%
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	95%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	92%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	92%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	93%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	105%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	90%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	83%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	77%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	100	[NT]	[NT]	LCS-3	92%

		Clie	ent Referenc	e: 13	3793/5 , Airds	5		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			27/03/2 017	[NT]	[NT]	LCS-3	27/03/2017
Date analysed	-			27/03/2 017	[NT]	[NT]	LCS-3	27/03/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-3	103%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	100	[NT]	[NT]	LCS-3	99%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date prepared	-			27/03/2 017	[NT]	[NT]	LCS-1	27/03/2017
Date analysed	-			27/03/2 017	[NT]	[NT]	LCS-1	27/03/2017
Arsenic	mg/kg	4	Metals-020	<4	[NT]	[NT]	LCS-1	117%
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]	[NT]	LCS-1	110%
Chromium	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-1	111%
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-1	111%
Lead	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-1	100%
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	LCS-1	101%
Nickel	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-1	103%
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-1	106%

#### **Report Comments:**

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

#### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike** : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

coc 24/3

# $\mathbf{G}_{\text{EOTECHNIQUE PTY LTD}}$

# Laboratory Test Request / Chain of Custody Record

RITH NSW 275			F	PENRITH NS	SW 2751		1					Page	1	of	2
	AB SERVICES F	PTY LD					Sampling B	y:	SS/JH	Job	No:	13793/5			
	EY STREET OOD NSW 2067									Proje	at:				
CHAISW	00D NSW 2007									Floje	CL.				
02 9910 6	200			FAX:	02 9910 6	5201	Project Man	ager:	JX	Loca	tion: Airo	ds			
02 0010 0	200							Jen							
N: MS AILEEN H	IIE														
	Sampling deta	ails		Sample	type		Decul		red bu	Ctandard .	Turner		lima		
Location	Depth (m)	Date	Time	Soil / Material	Water		Resu	its requi	red by:	Standard	rurnar	round i	ime		
						Metals As, Cd, Cr, Cu,	TPH* & BTEX	РАН	OCP	РСВ					KEEF
74	-	20/03/2017		SG	+	Pb, Hg, Ni and Zn								-	YES
Z1 Z2		20/03/2017	-	SG	+ +				-	rolab Services					YES
3 Z3		20/03/2017	-	SG			-	ENVIRO	inp	12 Ashley St				-	YES
4 Z4		21/03/2017	And There	SG				EIIVIRU	Chatsy	ood NSW 2067			54.	10305 18	YES
5 Z5	-	21/03/2017	-	SG				Lab N		(02) 9910 6200					YES
6 Z6	2	21/03/2017	-	SG				Job N	0: 1640:	8	×.7.	0			YES
7 Z7		22/03/2017	-	SG				Data F	eceived: So	pte: 22/03.	RITH				YES
8 Z8		22/03/2017	-	SG					eceived:	c: 34/05	12:20				YES
9 Z9		22/03/2017	-	SG					ed by: AZ						YES
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-					Temp:	Cool/Ambien	t					
								Coolin	g: Ice/Icepac	$\triangleright$					
								Securi	ity Intact/Bro	ken/None					
1		Reli	nquished I			Data		News			ceived by			Data	
Name			Signat JX			Date 24/03/2017		Name		AZ	gnature		2703	Date	1.2
JOHN ) end:	0		JX			24/03/2017	Andy	Zhang					Comment of the local division of the local d	COC' 14	103 12



# ENVIROLAB SERVICES PTY LTD

۰.

Sampling Date:	20, 21 & 22/3/2017	Job No:	13793/5
Sampled by:	SS/JH	0	
Project Manager:	JX	Location:	Airds
Results Required	by: Standard Turnaround T	ime	

Page 2 of 2

Composite	Sub-Samples		Analyte	6
Sample		Metals	OCP	PCB
Split CS1	Z1 + Z2 + Z3	~	~	~
Split CS2	Z4 + Z5 + Z6	~	-	-
Split CS3	Z7 + Z8 + Z9	~	~	-

Test required

Metals include arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn) OCP = Organochlorine Pesticides PCB: Polychlorinated Biphenyls

> 41 3 ¢

JX 24/3/2017 (JOHN XU) Geotechnique Pty Ltd



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

Client Details	
Client	Geotechnique Pty Ltd
Attention	John Xu

Sample Login Details				
Your Reference	13793/5 , Airds			
Envirolab Reference	164078			
Date Sample Received	22/03/2017			
Date Instructions Received	24/03/2017			
Date Results Expected to be Reported	31/03/2017			

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	9 Soils, 3 Composites
Turnaround Time Requested	Standard
Temperature on receipt (°C)	12.9
Cooling Method	Ice Pack
Sampling Date Provided	YES

#### Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

## Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	PCBs in Soil	Acid Extractable metals in soil	On Hold
Z1	$\checkmark$	$\checkmark$	$\checkmark$				
Z2							$\checkmark$
Z3							$\checkmark$
Z4							$\checkmark$
Z5							$\checkmark$
Z6							$\checkmark$
Z7							$\checkmark$
Z8							$\checkmark$
Z9							$\checkmark$
Split CS1				$\checkmark$	$\checkmark$	$\checkmark$	
Split CS2						$\checkmark$	
Split CS3				$\checkmark$		$\checkmark$	

The ' $\checkmark$ ' indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.



email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

164078-A

Client: Geotechnique Pty Ltd PO Box 880 Penrith NSW 2751

Attention: John Xu

## Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

# Addtional Testing on 3 Soils eived 22/03/17 / 04/04/17

13793/5, Airds

## Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

**CERTIFICATE OF ANALYSIS** 

## **Report Details:**

 Date results requested by: / Issue Date:
 10/04/17
 / 7/04/17

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

## **Results Approved By:**

David Springer General Manager

164078-A R 00



## Client Reference: 13793/5, Airds

Acid Extractable metals in soil				
Our Reference:	UNITS	164078-A-4	164078-A-5	164078-A-6
Your Reference		Z4	Z5	Z6
	-			
Date Sampled		21/03/2017	21/03/2017	21/03/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	05/04/2017	05/04/2017	05/04/2017
Date analysed	-	06/04/2017	06/04/2017	06/04/2017
Copper	mg/kg	21	120	28
Zinc	mg/kg	68	360	81

## Client Reference:

13793/5 , Airds

Moisture Our Reference:	UNITS	164078-A-4	164078-A-5	164078-A-6
	UNITS			
Your Reference		Z4	Z5	Z6
Date Sampled Type of sample		21/03/2017 Soil	21/03/2017 Soil	21/03/2017 Soil
Data proported		05/04/2017	05/04/2017	05/04/2017
Date prepared	-	05/04/2017	05/04/2017	05/04/2017
Date analysed	-	06/04/2017	06/04/2017	06/04/2017
Moisture	%	26	23	22

## Client Reference: 13793/5 , Airds

MethodID	Methodology Summary
Metals-020	Determination of various metals by ICP-AES.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.

Client Reference: 13793/5 , Airds									
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %	
Acid Extractable metals in soil					Sm#	Base II Duplicate II % RPD		Recovery	
Date prepared	-			05/04/2 017	[NT]	[NT]	LCS-5	05/04/2017	
Date analysed	-			06/04/2 017	[NT]	[NT]	LCS-5	06/04/2017	
Copper	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	114%	
Zinc	mg/kg	1	Metals-020	<1	[NT]	[NT]	LCS-5	106%	

### **Report Comments:**

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike** : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**LCS (Laboratory Control Sample)** : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.



## Laboratory Test Request / Chain of Custody Record

Lemko PENRI	Place TH NSW 2750			F	P O PENRITH NS	Box 880 W 2751	Tel: (02) 4722 Fax: (02) 4722					Page	1	of	1
TO:	ENVIROLA 12 ASHLE	B SERVICES F ( STREET OD NSW 2067						Sampling By:	S	S/JH	Job No: Project:	13793/5			
PH:	02 9910 62	00			FAX:	02 9910 6201		Project Manag	er: J)	X	Location: A	irds			
ATTN:	MS AILEEN HI			_	Comple	4.ma					_				
	Location	Depth (m)	Date	Time	Sample Soil / Material	Water	Result	s required <b>b</b>		nday 10/04/20 Invirolab Ref			rnaround	Time)	
							Cu & Zn								KEEP SAMPLE
4-	Z4		21/03/2017	1.141	SG		~	-			-		1		YES
5-	Z5		21/03/2017		SG		~								YES
6-	Z6	-	21/03/2017		SG		~							-	YES
9						<u>11.51</u>	1-	2 · · · · · · · · · · · · · · · · · · ·			-	-	-		
												1	-	-	-
1.00								*)				1		-	
-											-	-		-	
-								-							
-					-							1			
		-			-										
		-		-				1.000							
-												1		-	
															-
	Relinquished by				Name Signature		1	Date							
	Name			Signa			Date 4/04/2017		Name		Signature		4	444/17	
Legen WG WP	Water sam	U ple, glass bottle ple, plastic bott		JX	SG	Soil sample (gl		SI	P S	Soil sample (plastic l Fest required	0	<i>c</i>	* Purge & Tra	al to	



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

## SAMPLE RECEIPT ADVICE

Client Details	
Client	Geotechnique Pty Ltd
Attention	John Xu

Sample Login Details				
Your Reference	13793/5 , Airds			
Envirolab Reference	164078-A			
Date Sample Received	22/03/2017			
Date Instructions Received	04/04/2017			
Date Results Expected to be Reported	10/04/2017			

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	Addtional Testing on 3 Soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	12.9
Cooling Method	Ice Pack
Sampling Date Provided	YES

### Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

## Please direct any queries to:

Aileen Hie	Jacinta Hurst			
Phone: 02 9910 6200	Phone: 02 9910 6200			
Fax: 02 9910 6201	Fax: 02 9910 6201			
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au			

Sample and Testing Details on following page



#### Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	Acid Extractable metals in soil	On Hold
Z1		$\checkmark$
Z2		$\checkmark$
Z3		$\checkmark$
Z4	$\checkmark$	
Z5	$\checkmark$	
Z6	$\checkmark$	
Z7		$\checkmark$
Z8		$\checkmark$
Z9		√ √ √
Split CS1		$\checkmark$
Split CS2		$\checkmark$
Split CS3		$\checkmark$

The ' $\checkmark$ ' indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.

## **APPENDIX H**

### **ENVIRONMENTAL NOTES**



#### IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Geotechnique Pty Ltd, using guidelines prepared by the ASFE (Associated Soil and Foundation Engineers). The notes are offered to assist in the interpretation of your environmental site assessment report.

### REASONS FOR AN ENVIRONMENTAL ASSESSMENT

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre-acquisition assessment on behalf of a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has changed, e.g. from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of e.g. a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the ongoing proposed activity. Such risks may be financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

#### ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment might not detect all contamination within a site. Contaminants could be present in areas that were not surveyed or sampled, or migrate to areas that did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant that may occur; only the most likely contaminants are screened.

# AN ENVIRONMENTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

In the following events and in order to avoid cost problems, you should ask your consultant to assess any changes in the conclusion and recommendations made in the assessment:

- When the nature of the proposed development is changed e.g. if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered e.g. if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

#### ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientists and opinions are drawn about the overall sub-surface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason site owners should retain the services of their consultants throughout the development stages of the project in order to identify variances, conduct additional tests that may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by Geotechnique Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, approval should be directly sought.

Environmental Notes continued

#### STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data that may have been affected by time. The consultant should be requested to advise if additional tests are required.

#### ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTS

Environmental site assessments are prepared in response to a specific scope of work required to meet the specific needs of specific individuals e.g. an assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another consulting civil engineer.

An assessment should not be used by other persons for any purpose or by the client for a different purpose. No individual, other than the client, should apply an assessment, even for its intended purpose, without first conferring with the consultant. No person should apply an assessment for any purpose other than that originally contemplated, without first conferring with the consultant.

#### MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

#### LOGS SHOULD NOT BE SEPARATED FROM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists, based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these would not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. Should this occur, delays and disputes, or unanticipated costs may result.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

#### READ RESPONSIBILITY CLAUSES CLOSELY

An environmental site assessment is based extensively on judgement and opinion; therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.

EOTECHNIQUE

PTY LTD